
Modelware for Middleware

Keith Duddy, Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steel

{dud,agerber,lawley,kerry,steel}@dstc.edu.au

CRC for Enterprise Distributed Systems (DSTC)∗

April 16, 2003

Abstract
The OMG’s Model Driven Architecture is a reference architecture for model driven development of computing sys-
tems. Implementations of primitive forms of this style of development are everywhere, but a reference implementation
architecture is still some way off. This paper explains our set of requirements for the main components required for
MDA: A single Meta-Modeling Language, Platform Independent Modelling Languages, Platform Specific Modelling
Languages, and a Transformation Language. It also sketches the solutions that are emerging from various standardi-
sation efforts in which the authors are participating in particular the EDOC ECA language and the MOF 2.0 Query,
View and Transformation language.

1 Introduction

In this position paper we will demonstrate the benefits
of the MDATM approach, as it is becoming defined at
OMG [4] and elsewhere.

The MDA approach can be exemplified by consid-
ering the design of an enterprise application creating a
Platform Independent Model (PIM) of an application us-
ing a middleware-inspired architectural modelling lan-
guage such as EDOC ECA [6, 1]. A platform for im-
plementation and deployment of this application is then
selected, such as Sun’s J2EE. The transformation of the
PIM into a Platform Specific Model (PSM) is achieved
via a transformation description (or mapping) from the
PIM modelling language to the PSM modelling lan-
guage.

The benefits of this approach are manifold. Firstly
there are benefits to using a high-level architectural mod-
eling language for designing the application PIM. These
have to do with the abstraction of irrelevant detail, and
the constraints of such a langauge which capture best
practice for design.

∗The work reported in this paper has been funded in part by
the Co-operative Centre for Enterprise Distributed Systems Technol-
ogy (DSTC) through the Australian Federal Government’s CRC Pro-
gramme (Department of Education, Science and Training).

Secondly the transformation of the PIM to a PSM for
a particular platform allows the encapsulation of further
design best practice, using a paradigm of pattern match-
ing in the PIM to fill in pattern templates in the PSM.
As the modelling languages we use are MOF-based, and
therefore object-oriented in nature, certain transforma-
tion rules can be applied to very general concepts, and
then extended or superseded based on sub-types of these
concepts, or on predicates which identify subsets of ob-
ject instances.

Thirdly the transformation framework allows addi-
tional information (captured as other models) that re-
flects the capabilities of the platform to be used. This
information relates the objects in the PIM to platform
concepts, allowing the annotation of the PIM to indicate
which application artifacts should be implemented in
what manner. Often this will address considerations in-
cluding non-functional issues (the “-ilities” such as scal-
ability, reliability, etc) and deployment and integration
issues.



2 Technologies and Terminologies

2.1 MDA

The OMG’s Model Driven ArchitectureTM (MDA) [4]
defines an approach to enterprise distributed system de-
velopment that separates the specification of system
functionality from the specification of the implementa-
tion of that functionality on a specific technology plat-
form. The MDA approach envisions transformations (or
mappings) from Platform Independent Models (PIMs) to
one or more Platform Specific Models (PSMs).

The main requirements we have of an MDA environ-
ment are:

• High quality (meta)models of architectural ap-
proaches are available

• High quality (meta)models of platforms are avail-
able

• Multiple levels of mappings between models of dif-
ferent degrees of abstraction are possible

• Mappings can expressed declaratively

• Executions of mappings are traceable and repeat-
able

• The results of mappings can be augmented without
loss when altering the models and regenerating the
results

• Different aspects or viewpoints of a system can be
captured by separate but related models

• Mappings can use several models as input, and pro-
duce several models as output (preserving view-
point separation or aspects at different levels of ab-
straction)

2.2 Platform Independent Models

A Platform Independent Model is an expression of an
abstract system design which can be implemented for, or
executed on a range of similar platforms. Platforms can
be any set of services provided by a computing and/or
network environment on which some kind of higher-
level application can execute.

An example where the platform is any one of sev-
eral application servers is the OMG’s EDOC Enterprise

Collaboration Architecture (ECA) [6]. It is a structured
framework for recursive definitions of computational ob-
jects and their interactions. It can represent designs for
B2B interactions, container managed entities and com-
ponents, synchronous and asynchronous messaging, and
workflow-style processes. A language like ECA has
many benefits:

• Such langauges may be constrained to use best-
practice patterns and structures distilled from the
experience of architects.

• The model of the application can be expressed in
terms closer to the business domain of the applica-
tion, without mixing in concerns for optimisation
of the implementation. This can be considered an
aspect-oriented approach [3].

• Being based on MOF it may have several represen-
tations for different purposes:

– graphical – for ease of comprehension and
communication, especially to non-technical
domain experts and clients

– programmatic– APIs may be generated for
access to the model by browsers, graphical
tools, and transformation engines

– textual – XML forms can be generated for
tool interchange. More human usable forms
such as the recently adopted OMG Human
Usable Textual Notation (HUTN) standard [5]
can be used for display to, or input by, pro-
grammers.

2.3 Platform Specific Models

A Platform Specific Model (PSM) is an expression in
some language that represents some aspect of a system
targeted directly to a platform. Following the PIM ex-
ample, an example Application Server platform is En-
terprise Java Beans (EJB).

Designs for the EJB platform can also be expressed as
MOF models using the OMG’s EDOC specification [6].
This avoids the difficulties of manipulating text files and
other uniquely formatted artifacts, often with an implicit
abstract syntax.

At some point in a process of mapping models to other
models, a native representation (usually in the form of
text files) is required, as the PSM produced will be



directly executable (perhaps with some additional pro-
gramming effort added) on the platform. DSTC has
produced technology known as Anti-Yacc [2] which de-
scribes what is essentially a model-to-text pretty print.

2.4 Model Transformations

At the time of writing the OMG has issued a Request for
Proposals (RFP) for MOF 2.0 Query, View, and Trans-
formation [7] technology. The authors are currently
preparing such a proposal. The main concepts it intro-
duces are:

• Transformation rules consist of source model and
target model patterns and specifications of equiva-
lences between the two.

• Source model patterns are used to find matching in-
stances in a (set of) source model(s).

• Target model patterns are used to construct new
instances in the target model(s) with attribute val-
ues and relationships (associations) satisfying the
equivalence expressions.

• The relationshipsextendsand/or supersedescan
be specified between rules, and are similar to the
object-oriented concepts of inheritance and over-
riding.

• An extra configuration modelcan be used to
“mark” model elements in the source PIM with in-
formation that is not directly expressible in the PIM
language.

3 Capturing Best Practice in the Mapping

In this section we discuss the requirements for a map-
ping language that allows the most flexible and expres-
sive definitions of the mappings between models. We
also position our MOF Query/View/Transformation pro-
posal in terms of the capabilities it offers as solutions to
these requirements.

3.1 Requirements for a Mapping Language

It is widely accepted that a transformation language
must be able to:

• Match elements, and ad-hoc tuples of elements, by
type (include instances of sub-types) and precise-
type (exclude instances of sub-types).

• Filter the set of matched elements or tuples based
on associations, attribute values, and other context.

• Handle recursive structure with arbitrary levels of
nesting.

• Support both multiple source extents and multiple
target extents.

The requirement that a transformation language must
be declarative is stated in the MOF Query, View and
Transformation RFP. We take this to mean that it must
not describe a procedural mechanism for how a target
model should be constructed from a source model, but
simply assert the relationships between them.

In addition we believe that the following requirements
for are important for application to a broad range of
transformations and for clarity of expression.

• There should be no dependency on the application
order of the rules, and all rules are applied to all
source elements that match.

• Creation of target objects is implicit rather than ex-
plicit. This follows from the previous requirement;
if there is no explicit rule application order, then we
cannot know which rule creates an object and are
relieved of the burden of having to know. Objects
are simply created on demand during the execution
of a transformation.

• A single target element may be defined by multiple
rules. That is, different rules can provide property
values for the same object.

• Named associations are established between source
and target model elements. These associations can
then be used for maintaining traceability informa-
tion.

3.2 Aspect-driven Transformation

The last set of requirements are important so that read-
able transformation descriptions can be written to map
many source model elements into a single target model
element, or vice-versa. That is, a rule may be written
to deal with each concept of interest, no matter what the
granularity on either source or target side of the rule.



However, the general case of this approach, which
we call aspect-driven transformations, allow rules to be
structured around semantic concepts rather than objects.
E.g. transforming all imperial measurements to metric
ones, replacing one naming system with another, chang-
ing a security policy for a certain type of attribute.

Aspect-driven transformations are a major reason why
we favour implicit (rather than explicit) creation of tar-
get objects, as aspect-driven transformation rules rarely
address entire objects, and thus it is extremely difficult to
determine which of several transformation rules (which
may or may not apply to any given object) should then
have responsibility for creating the target object. Typi-
cally the target object is only required if any one of the
transformation rules can be applied, but no target object
should be created if none of the rules can be applied.
This is extremely difficult to express if explicit creation
is used.

3.3 Transformation Re-use

The final consideration for writing readable and re-
usable transformation definitions is the ability to re-use
both patterns for matching or creating model elements,
and whole rules.

The former requires a named pattern construct with
parameters to allow a common structure to be matched
or created in multiple rules by using an expressive name.
The latter is supported by two kinds of rule re-use:

• extension, in which additional constraints can be
added to the matching of a source model element,
and additional target elements for creation can be
defined.

• supersession, in which a rule can be overridden
in certain circumstances. Superseding is not only
ideal for rule optimisation and rule parameterisa-
tion, but also enhances reusability since general
purpose rules can be tailored after-the-fact without
having to modify them directly.

3.4 Parameterising the Mapping

One of the major stumbling blocks in the acceptance
of MDA-like technologies in the past has been the one-
size-fits-all nature of the mappings.

Our approach to transformation specification avoids
this trap via two complementary mechanisms.

The first mechanism has been discussed in the previ-
ous sections. It is the expressive power of the extension
mechanisms in the proposed MOF transformation lan-
guage.

The second is the use of mapping configuration mod-
els and parameterised mappings. With this approach, a
source model is effectively annotated, via a separate con-
figuration model, with information that can be used by
the mapping rules to select between a variety of possible
transformations.

For example, if an operation is known to be read-only
but the PIM has no place to indicate that an operation
is read-only, then we can add this information to a con-
figuration model and write the transformation rules such
that they use this information if it is available.

So, while the second approach works well when the
parameterisation possibilities are known in advance by
the rule writer, the first approach allows new rules to
be written as new knowledge comes to light, or to com-
pensate for rules that were, perhaps, written for an older
version of the PSM language. Another possible use is
that transformation to a generic platform language, for
example EJB, can be superseded for a language that ex-
tends this with product-specific details and features.

4 Conclusion

The benefits of an MDA approach to middleware appli-
cation development are as follows.

Firstly, the application architecture can be expressed
in a “pure” form, without regard for the optimisation
concerns of a particular middleware platform. This re-
sults in a consistent, easy to understand, domain-focused
model which can be easily explained to domain experts
in diagrams.

Although platforms such as EJB attempt to offer ap-
plications a number of simplifying services to aid imple-
mentation, performance considerations often dictate that
these services are worked around, or used only in certain
constrained ways [8].

Thanks to the power of the proposed DSTC MOF
Transformation specification the experience of multiple
architects over multiple projects can be expressed as a



concrete, declarative mapping from the concepts avail-
able in the PIM language to the concepts of the imple-
mentation platform. This mapping specification can cap-
ture the best practice for implementation of domain con-
cepts on a particular platform.

In addition to mappings based only on the PIM con-
cepts, configuration models can be exploited to add back
the details of a platform that are abstracted out in lan-
guages like ECA. This effectively allows tools to query
architects about which of the available implementation
styles to choose for each PIM artifact based on, among
other things, knowledge of the domain, and knowledge
of probable usage patterns, performance, and robustness
requirements.

References

[1] A. P. Barros, K. Duddy, M. Lawley, Z. Milosevic,
K. Raymond, and A. Wood. Processes, roles, and
events: Uml concepts for enterprise architecture.
In A. Evans, S. Kent, and B. Selic, editors,UML
2000 - The Unified Modeling Language, Advancing
the Standard, Third International Conference, York,
UK, October 2-6, 2000, Proceedings, volume 1939
of Lecture Notes in Computer Science, pages 62–77.
Springer, 2000.

[2] D. Hearnden, K. Raymond, and J. Steel. Anti-Yacc:
MOF-to-text. InEDOC 2002, Proceedings of the
Sixth IEEE International Enterprise Distributed Ob-
ject Computing Conference, Lausanne, Switzerland,
Sept. 2002. IEEE, IEEE.

[3] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
Oriented Programming. In M. Akşit and S. Mat-
suoka, editors, 11th Europeen Conf. Object-
Oriented Programming, volume 1241 ofLNCS,
pages 220–242. Springer Verlag, 1997.

[4] OMG. Model Driven Architecture – A Techni-
cal Perspective. OMG Document: ormsc/01-07-01,
July 2001.

[5] OMG. Human-Usable Textual Notation. OMG Doc-
ument: ptc/02-12-01, Dec. 2002.

[6] OMG. UML Profile for Enterprise Distributed Ob-
ject Computing (EDOC). OMG Document: ptc/02-
02-05, Feb. 2002.

[7] Request for Proposal: MOF 2.0 Query / Views /
Transformations RFP. OMG Document: ad/02-04-
10, Apr. 2002.

[8] J. Shirazi. EJB Performance Tips.
http://www.javaperformancetuning.com/
tips/j2ee ejb.shtml , Nov. 2002.


