Change Propagation in the MDA: A Model
Merging Approach

by

Alejandro Metke Jimenez

A thesis submitted to the

School of Information Technology and Electrical Engineering

The University of Queensland

for the degree of

MASTER OF INFORMATION TECHNOLOGY STUDIES

June 2005



Statement of originality

I declare that the work presented in the thesis is, to the best of my knowledge
and belief, original and my own work, except as acknowledged in the text, and
that the material has not been submitted, either in whole or in part, for a degree

at this or any other university.

Alejandro Metke Jimenez



Acknowledgments

This thesis is dedicated to my sister Laura and my brother Ricardo.

First of all T would like to thank my supervisor Dr. Michael Lawley for his
excellent guidance throughout the project. I would also like to thank Dr. Kerry
Raymond and Mr. Keith Duddy, the rest of the Pegamento team, for their
support.

I would like to thank the Distributed Systems Technology Center (DSTC)
for the opportunity to gain work experience through the vacation project and
for the use of their office space for this project.

Finally, I would like to thank the rest of my family for their unconditional

support.

ii



Abstract

Dealing with change propagation is an important issue in the Model Driven
Architecture. Propagating changes in model to model transformations is a
challenging task since the target models may contain important changes that
shouldn’t be simply overwritten. Also, the process of determining what has
changed is not straightforward since MOF models have limited ability to de-
scribe conditions for object equivalence.

This thesis describes the problem of adding change propagation capabilities
to Tefkat, the DSTC’s transformation engine. A model merging approach is
explored, in which the target model is completely regenerated when the trans-
formation is re-run and then merged with the previous target model. The whole
process involves three major steps: finding the delta between the models, gath-
ering input from the user to guide the merge process, and merging the models.

A meta-model to represent the delta between the models is presented. A
meta-model independent algorithm to find the delta is described. The algorithm
deals with state-based merging in which only the two models being merged are
available and relies on the trace objects created by the engine to determine which
objects in the models being merged are equivalent, without having to depend
on the existence of unique object identifiers. Limitations of the algorithm for
certain scenarios are discussed, and possible solutions are proposed as future
research. An implementation as a model transformation is presented. A strategy
to gather the user input based on simple rules is shown. Finally, an algorithm
that uses the information collected in the previous steps to merge the models is
described and implemented also as a transformation.

iii



Contents

Statement of originality
Acknowledgments
Abstract

1 Introduction
1.1 Model Driven Architecture . . ... ... ... ..........
1.2 Model Transformations. . . . . .. ... ... ... ........
1.2.1 Kinds of Transformations . . . ... ... ... ......
122 OMG'S QVT . . oo oo
1.3 Change Propagation in the MDA . . . . . ... ... .......
1.3.1 UML to Relational Transformation . . . . ... ... ...
1.3.2 The Online Video Rental Store . . . . . .. .. ... ...

1.4 Thesis Overview . . . . . . . . . @ i i i i i

2 The Merging Problem
2.1 Software Merging . . . . . . . . . ...
2.2 Model Merging . . . . .. .. ...
2.2.1 Detecting Changes . . . . . ... ... ... ........
2.2.2  Gathering User Input . . . . ... ... ... ... ..
2.2.3 Mergingthe Models . . . . ... .. ... ... .....
2.3 Merging In Tefkat . . . . . ... ... ... ... ... .

3 Change Detection
3.1 The Delta Model . . . . .. .. .. ... ... ... ... ...
3.1.1 Matched Objects . . . . . . . .. ... ... ...
3.1.2 Unmatched Objects . . . . ... .. ... ... ......
3.1.3 Attributes Delta . . . . . . ... ..o
3.1.4 References Delta . . . ... ... ... ... ... ...
3.2 Rule Based Configuration . . .. ... ... .. ..........

iv

ii

iii

10
10
11
12
21
21
23



CONTENTS

3.3.1

3.3 The Change Detection Process . . . ... ... ... .......
Object Matching . . . . .. ... ... ... ... ...,
3.3.2 Objects

3.3.3 Attributes . . . . .. ...
3.34 References. . . . . . . . . . ...

4 Model Merging

4.1 The Merging Process . . . . . . .. ... ... ... ...
Matched Objects . . . . . . . . ... ...
Unmatched Objects . . . . ... .. .. ... ... ....
Attribute Changes . . . . ... .. ... ... ..., .

Reference Changes . . . . . ... . ... ... .. .....

4.1.1
4.1.2
4.1.3
414

5 Conclusion

5.2.1
5.2.2
5.2.3
5.24

Bibliography

5.1 Summaryof Work . . . ... ... ... .. o
5.2 Future Work

Collecting User Input. . . . . . . .. .. ... .. .. ...
Delta Model Consistency . . . . . ... ... ... ....
Unidentified Matching Objects . . . . . . ... ... ...
Change Propagation In Both Ways . . . . . .. ... ...
5.3 Research Contribution . . . . ... ... ... .. .. .......

A UML To Relational Transformation
A1 Packagesto Schemas . . . . .. ... ... ... ... ...
A2 ClassestoTables . . . . . . . . . . . . . .. . ...

Attributes to Columns . . . . . . . . .. ...
Associations to Tables . . . . . . . . . ... ... ... . . ...,

28
28
29
33
34

50
50
50
52
54
55

63
63
64
64
64
65
65
66

67



List of Figures

1.1 An example of the OMG’s four layer architecture. . . ... ...
1.2 A simple UML model of the online video rental store. . ... ..
1.3 The relational model for the online video rental store. The Log
table has been added manually to the model. . . . . . ... ...
1.4 The updated UML model of the online video rental store, now
able to handle VHS tapes and DVDs. . . . . .. ... ... ...
1.5 The result of re-running the transformation on the updated online
video store UML model. . . . . . . ... ... ... .. ......
1.6 The merged online video store relational model. . . . . . . . . ..

2.1 The generic tracemodel. . . . ... ..o
2.2 The result of re-running a transformation. . . . . . . .. .. ...
2.3 An example of an object deleted from the source model.
2.4  An example of an object being added to the target model.
2.5 An example of an object being removed from the original target
model. . . ...
2.6 An example of an object added to the source model. . . . . . ..
2.7 An example of a refactoring in the source model. . . . . ... ..
2.8 An example of a change in a single-valued reference in which a
reference is set to point to another object. . . . ... ... ...
2.9 An example of a change in a single-valued reference in which a
reference isunset. . . . .. ..o Lo
2.10 An example of a change in a multiplicity many unordered refer-

ENCE. . . . . L L L L e e e e e e e e e e e e e e e e e e e e e

2.11 An example of a change in a multiplicity many ordered reference.

3.1 The MOF diagram of the delta meta-model. . . . . . . ... ...

16

17
18

25

3.2 Rule used to match the corresponding objects in the target models. 28

3.3 Patterns used to find the matching objects. . . . ... ... ...

vi

29



LIST OF FIGURES vii

3.4 Rule used to find objects that became unmatched because of an

object being deleted from the source model. . . . . . .. .. ... 30
3.5 Rule used to find objects added to the target model. . . . . . .. 30
3.6 A pattern used to determine if an object is the target of an object

of the original trace model. . . . . ... . ... ... ... 31
3.7 Rule used to find objects that became unmatched because of an

object being deleted from the original target model. . . . . . .. 31
3.8 Rule used to find objects that became unmatched because of an

object being added to the source model. . . . . . ... ... ... 32
3.9 Pattern used to find the matching trace objects from the original

and new trace models. . . . . ... ..o oL 32
3.10 Rule used to find the objects in the original target model that

have no known cause for being unmatched. . . ... ... . ... 32
3.11 Rule used to find the objects in the new target model that have

no known cause for being unmatched. . . ... ... ... 33
3.12 Rule used to find the matching objects with differences in their

attribute values. . . . . .. ..o 34
3.13 Rule used to find the differences in the matching object’s at-

tribute values. . . . .. ... L. L 34
3.14 Rule used to find changes in single-valued references. . . . . . . . 35
3.15 The result of running the delta transformation on the example

shown in Figure 2.8. . . . . . . .. ... ... . 35
3.16 Rule used to find changes in single-valued references that have

been unset in the original target model. . . .. ... . ... ... 36
3.17 Rule used to find changes in single-valued references that have

been unset in the new target model. . . . . ... ... ... ... 36
3.18 The result of running the delta transformation on the example

shown in Figure 2.9, assuming the default action for this type of

change is keeping the reference that is set. . . . ... ... ... 37
3.19 Rule used to link the sets of objects pointed to by the multi-valued

unordered references in the original target model. . . . . . . . .. 37
3.20 Rule used to link the sets of objects pointed to by the multi-valued
unordered references in the new target model. . . . . . . ... .. 37

3.21 Rule used to find references to matched objects that have been

added to a multi-valued unordered reference in the original target

3.22 Rule used to find references to unmatched objects that have been
added to a multi-valued unordered reference in the original target



LIST OF FIGURES viii

3.23

3.24

3.25

3.26

3.27
3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.38

3.39

3.40

3.41

The result of running the first pair of rules on the example shown
in Figure 2.10. . . . . . ... ... L o 39
Rule used to find references to matched objects that have been

added to a multi-valued unordered reference in the new target

Rule used to find references to unmatched objects that have been

added to a multi-valued unordered reference in the new target

The result of running the second pair of rules on the example
shown in Figure 2.10. . .. .. .. ... ... ... ... ... .. 40
Rule used to group unordered multi-valued reference changes. . . 40
The result of running the delta transformation on the example
shown in Figure 2.10. . . . . ... ... ... ... ... ... .. 41
Rule used to link the sets of objects pointed to by the multi-valued
ordered references in the original target model. . . . . . . .. .. 41
Rule used to link the sets of objects pointed to by the multi-valued
ordered references in the new target model. . . . . . . ... ... 42
Patterns used to establish the relative order in the multi-valued
ordered references. . . . . . . ... ... L. oo 43
Rule used to link the the relative order of the multi-valued ordered
references in the original target model. . . . . . . . . . ... ... 43
Rule used to link the the relative order of the multi-valued ordered
references in the new target model. . . . . . . . ... ... 44
Rule used to find the changes in the order of the references in the
multi-valued ordered references. . . . . . . ... ..., 44
The result of running the findOrderedReferenceltems rule on the
example shown in Figure 2.11. . . . .. .. .. ... ... .... 45
Rule used to find references to matched objects that have been

added to a multi-valued ordered reference in the original target

Rule used to find references to unmatched objects that have been
added to a multi-valued ordered reference in the original target

Rule used to find references to matched objects that have been
added to a multi-valued ordered reference in the new target model. 47
Rule used to find references to unmatched objects that have been
added to a multi-valued ordered reference in the new target model. 47
The result of running both pairs of rules on the example shown
in Figure 2.11. . . . . . ... ... oo oL 48

Rule used to group ordered multi-valued reference changes. . . . 48



LIST OF FIGURES

3.42 The result of running the delta transformation on the example
shown in Figure 2.11. . . . . . . . ... ... ...

3.43 Rule used to group all the entries into a single ReferenceDelta

4.1 Rule used to copy the matched objects from the target models
into the merged model. . . . . . . .. ... oL oL,
4.2 Pattern used to determine if two objects are matched. . . . . . .
4.3 Rule used to copy the matching object’s attribute values that
haven’t changed. . . . . ... ... .. ... L.
4.4 Pattern used to determine if a matching object’s attribute values
havechanged. . . . . . . . .. . oL
4.5 Rule used to copy the matching object’s references that haven’t
changed. . . . . . . .. L
4.6 Pattern used to determine if a matching object’s references have

4.7 Rule used to copy the unmatched objects from the original target
model into the merged model. . . . . . . . ... ... ... ...
4.8 Rule used to set the attribute values of the objects created in the

merged model from the unmatched objects in the original target

4.9 Rule used to set the references of the objects created in the
merged model from the unmatched objects in the original tar-

4.10 Rule used to copy the unmatched objects from the new target
model into the merged model. . . . . . . . ... ... ... ...
4.11 Rule used to set the attribute values of the objects created in
the merged model from the unmatched objects in the new target

4.12 Rule used to set the references of the objects created in the
merged model from the unmatched objects in the new target

4.13 Rule used to set the matched object’s attributes that have changed
and must keep the value in the original target model. . . . . . . .

4.14 Rule used to set the matched object’s attributes that have changed
and must keep the value in the new target model. . . . . . . . ..

4.15 Rule used to set the matched object’s single-valued references
that have changed and must keep the value in the original target

ix



LIST OF FIGURES x

4.16 Rule used to set the matched object’s single-valued references

that have changed and must keep the value in the new target

4.17 Rule used to set the matched object’s single-valued references

that were unset in the new target model and must be set to the

value in the new target model. . . . . . .. .. ... .. ... 56
4.18 Rule used to set the matched object’s single-valued references

that were unset in the new target model and must be set to the

value in the new target model. . . . . . ... ... ... ... .. 57
4.19 Rule used to copy the multiplicity many unordered references in

the original target model that are reported as a change, point to

an object that has a match in the new target model, and must

be kept in the merged model. . . . . . . ... ... ... 57
4.20 Rule used to copy the multiplicity many unordered references in

the original target model that are reported as a change, point to

an object that doesn’t have a match in the new target model,

and must be kept in the merged model. . . . . ... .. ... .. 58
4.21 Rule used to copy the multiplicity many unordered references in

the new target model that are reported as a change, point to an

object that has a match in the original target model, and must

be kept in the merged model. . . . . . . .. ... ... ... ... 58
4.22 Rule used to copy the multiplicity many unordered references in

the new target model that are reported as a change, point to an

object that doesn’t have a match in the original target model,

and must be kept in the merged model. . . . . .. ... ... .. 59
4.23 Rule used to copy the multiplicity many ordered references that

the pairs of matching objects have in common. . . . . ... ... 60
4.24 Pattern used to determine if a reference that is part of a multiplic-

ity many ordered reference in the original target model doesn’t

have a corresponding reference in the new target model. . . . . . 60
4.25 Rule used to sort the multiplicity many ordered references that

must keep the relative order in the new target model. . . . . .. 60
4.26 Rule used to copy the multiplicity many ordered references in the

original target model that are reported as a change, point to an

object that has a match in the new target model, and must be

kept in the merged model. . . . . . . . . ... oL 61
4.27 Rule used to copy the multiplicity many ordered references in

the new target model that are reported as a change, point to an

object that has a match in the original target model, and must

be kept in the merged model. . . . . . . ... .. oL, 61



LIST OF FIGURES

4.28

4.29

Al
A2
A3
A4
Ab

A6
A7
A8
A9

Rule used to copy the multiplicity many ordered references in the
original target model that are reported as a change, point to an
object that doesn’t have a match in the new target model, and
must be kept in the merged model. . . . . .. ... .. ... ..
Rule used to copy the multiplicity many ordered references in
the new target model that are reported as a change, point to an
object that doesn’t have a match in the original target model,
and must be kept in the merged model. . . . . . ... ... ...

Simple relational meta-model. Source: [17]. . . .. ... ... ..
Rule used to create a schema for every package. . . . . . . .. ..
Rule used to create a table for every base class. . . . . .. .. ..
Pattern used to find the topmost superclass of a given class. . . .
Rule used to create a table for every class that inherits from
another. . . . . . . . . ... .
Rule used to create a column for every attribute. . . . . . . . ..
Pattern used to determine if an association end is navigable. . . .
Rule used to create a table for each one-to-one association.

Rule used to create a table for each one-to-many association.

A.10 Rule used to create a table for each many-to-many association.

xi

62

62

69
70
71
71

71
72
72
73
74
75



Chapter 1

Introduction

The Model Driven Architecture is a new software engineering paradigm that
looks to improve software development productivity, as well as the quality and
longevity of the software [5]. Model transformations represent a key issue in
the MDA. The Query, View and Transformations Request For Proposals issued
by the OMG will result in a standard transformation language that will enable
MOF model transformations [13]. The DSTC’s Pegamento project has designed
a language that meets these requirements [7] and is working on a transformation
engine, Tefkat, based on the Eclipse Modeling Framework open source project.

In an MDA project, target models derived from an automatic transforma-
tion are likely to suffer a considerable amount of manual changes. Also, since
change is the only constant in software engineering, source models can also suffer
changes during the development life-cycle. The transformation definitions may
also change if, for example, the best practices change. In re-running a transfor-
mation these changes should not be ignored and MDA tools should provide a
mechanism to preserve them and resolve any conflicts that may be encountered
in the process.

There are several approaches to deal with the problem of change propagation
in the context of model to model transformations. This thesis explores a merging
approach, in which the new target model is generated and then merged with
the previous target model. In order to do so, the different types of changes that
may occur need to be identified. Merging strategies used in other domains must
be evaluated in order to determine an appropriate way to deal with the merge
process in this context. Also, a strategy that helps direct the merge process
must be derived. Finally, a solution that incorporates such a strategy and that
can be easily integrated with Tefkat must be implemented.

Tefkat is designed in such a way that models cannot be updated, only cre-
ated. Therefore, the engine is in charge of generating the traces that relate the



CHAPTER 1. INTRODUCTION 2

objects created in the target model with the objects in the source that they
were created from. Each time a transformation is run a new trace is generated.
The merge process considers changes in the source model, the target model,
and the transformation definition. If the source model changes, the previous
version is not available, since Tefkat does not provide versioning support. The
same happens if the target model changes. This is why the merge process in
this case is state based. Only the original target model, that may or may not
have changed, and the new target model are available. Since the transformation
is re-run then two traces exist. The first one relates the source model with the
original target model and the second one relates the same source model with the
new target model. If changes have occurred in the source model or the original
target model then the original trace may have dangling references. The new
trace doesn’t have dangling references since it relates the source model with the

new target model that has just been generated.

1.1 Model Driven Architecture

The Model Driven Architecture is a new framework that looks to improve the
traditional software development process by raising the level of abstraction to
the model layer. Development starts with a PIM (Platform Independent Model),
which captures the system’s requirements without considering the target plat-
form. This model is then refined into a PSM (Platform Specific Model). Finally,
a PSM is further refined into source code.

A model is a description of a system. To be able to automate some of the
processes that occur in the MDA, models must be described using a well de-
fined language that allows automated interpretation by a computer. Text based
languages are usually defined using a grammar in Backus Naur Form (BNF).
A text based modeling language could be defined this way, but since model-
ing languages are not necessarily text based (for example, UML uses graphical
notation), another mechanism is needed. This mechanism is know as meta-
modeling [1]. A modeling language is itself a model (that is, a model of a
modeling language) and so it must also be described using a well defined lan-
guage. The model that defines a modeling language is known as its meta-model.
For example, the UML meta-model defines all the concepts that may exist in a
UML model. A meta-model is a model as well, and it must also be described
using a well defined language. This model is known as the meta-meta-model of
the language.

Since theoretically there could be an infinite number of layers, the OMG has
defined a four layer architecture. The layers are called M0, M1, M2 and M3.

Layer MO corresponds to model instances. Elements in this layer would be the



CHAPTER 1. INTRODUCTION 3

Layer M3 - Model of the MOF
MOF Class

a-ﬁinsta&e 0f==
1
1

UML Class Layer M2 - Model of the UML
c-ﬁinstJ}ce of==>
I
- del of
L M1 -M 5
e ayer odel of a person

-name; String

-:-:inst&le of==
[

1
Person

Layer MO - Person instance

name = "John Doe"

Figure 1.1: An example of the OMG’s four layer architecture.

actual representations of the objects being modeled, such as "John Doe", in the
case of persons. Layer M1 corresponds to the model. If UML was being used as
the modeling language, the class Person would be found in this layer. Layer M2
corresponds to the meta-model. The model that defines UML would be found
in this layer. Finally, layer M3 corresponds to the meta-meta-model. In order
to have a common language used to define all of the modeling languages used
in the MDA, the OMG developed the Meta Object Facility standard. Layer
M3 contains the model that defines MOF. This model, however, is itself defined
using MOF, and thus there is no need for any extra layers. Figure 1.1 shows a
simple example of the four layer architecture.

It is also important to consider that the structure of a model is determined
by its meta-model. However, any algorithm that operates on models in the
MDA context should be able to deal with the most general form a model can

take. In general, any model can be represented as a directed graph.



CHAPTER 1. INTRODUCTION 4
1.2 Model Transformations

1.2.1 Kinds of Transformations

Transformations can be classified according to the type of source and target they

operate on. The following categories are relevant in the context of the MDA:

e Text to text. In this case the source and target are textual artifacts. XSLT
is a popular technology used for doing this type of transformation. Other
more restricted approaches on model transformations use it by operating
on the XMI representation of the models [7]. A compiler is another exam-
ple of a text to text transformation, turning a high level source code file

into low level assembly code.

e Model to text. This type of transformation can be used at a higher level of
abstraction to produce source code from models. An example is the EMF
code generator, based on JET [14, 15]. This type of transformation can
also be used to produce different types of textual representations of models
such as the ones specified by the XMI and HUTN standards [12, 11].

e Text to model. Text to model transformations work the other way around
and can be used to generate models from textual representations. A
HUTN parser is an example of this type of transformation.

e Model to model. This type of transformation helps automate the refine-
ment process between models. By defining a set of transformation rules,
not only can a PIM be transformed into a PSM, but also the best practices
can be captured in the transformation definition.

Note however that model transformations are not only relevant in the MDA
context. A model to model transformation language can be used to transform
arbitrary models, as long as they have a meta-model expressed using the MOF.
For example, the Pegamento project has used Tefkat to automatically create
specific HUTN parsers for different meta-models, by transforming them into
ANTLR models that are then transformed into grammar files using a model to

text transformation.

1.2.2 OMG’s QVT

The OMG has issued a Request For Proposals that will result in a standard
language for querying, creating views and transforming MOF models[13]. The
language developed by the DSTC’s Pegamento project focuses on model to
model transformations and meets these requirements [8]. It is declarative, pat-
tern based and allows the transformations to address semantic concepts, rather



CHAPTER 1. INTRODUCTION 5

that structural features. The basic concepts in the language are rules, patterns
and traces. A transformation definition is made up of several transformation
rules. These rules relate a pattern in the source model to objects that are to be
created in the target model. A pattern represents a set of objects in the source
model that match certain criteria and also acts as a template for objects that
are to be created in the target model. Traces associate objects in the source
model with objects in the target model. They are necessary in order for rules
to refer to objects that might have already been created in the target model [7].

1.3 Change Propagation in the MDA

A simple example will be used to illustrate the relevance of the change propa-
gation problem in the context of a real MDA project.

1.3.1 UML to Relational Transformation

Software systems often use relational databases to handle persistent data. If
a system is specified using UML, the corresponding relational model can be
produced automatically by applying a set of rules to the UML model. One
possible transformation is shown in Appendix A.

1.3.2 The Online Video Rental Store

Suppose we need to build an online system to rent movies. Figure 1.2 shows
a very simple model that includes three classes: a Customer class that holds
the information of the video rental customers, a DVD class that holds the in-
formation of the movies being rented and a RentalOrder class that holds the
information of the orders placed by the customers. When the UML to rela-
tional transformation is run, the resulting model is the relational model needed
to create the database tables for the system. However, suppose a requirement
of the system is to keep a log of the system’s transactions through the database
engine. In this case the requirement is not really part of the UML model, but
nevertheless has to appear somewhere. The solution is to add a table for logging

purposes in the relational model. The resulting model can be seen in Figure 1.3.



CHAPTER 1. INTRODUCTION 6

RentalOrder Customer
-deliveryAddress: String -name: String
-deliveryDate: Date -accountlumber: int
+calculatePrice() O.n 1]-address: String
+calculatePickupDate() +createlrder()

1
1.n
DVD
-title: String
-year: Date

-rentalPrice: float
-maxRentalDays: int
-zone: int

Figure 1.2: A simple UML model of the online video rental store.

Log RentalOrder Customer

logID: INT customerID: INT
e customerio: E>}—H name: varcHAR
userIh: INT dvdID: INTEGER address: VARCHAR
date: DATE deliveryAddress: VARCHAR
time: DATE deliveryDate: DATE
FiAN
DVD

title: VARCHAR
year: DATE
rentalPrice: REAL
maxRentalDays: INT
zone: INT

Figure 1.3: The relational model for the online video rental store. The Log table
has been added manually to the model.

Suppose now that customer feedback indicates the need to include VHS
tapes in the online store. Since the original UML model was created to handle
only DVDs, it has to be updated to handle this new requirement. One possible
solution is to introduce two classes: a Movie class and a VHS class. Most of
the DVD’s attributes can be moved to the Movie class and both DVD and VHS
can extend Movie. Figure 1.4 shows the UML model updated in this way.



CHAPTER 1. INTRODUCTION 7

RentalOrder Customer
-deliveryfddress: String -name: String
-deliveryDate: Date -accountlumber: int
+calculatePrice() O.n 1) address: String
+calculatePickupDatel) +createlrder()

1
1.n
Movie

-title: String
-year: Date
-rentalPrice: float
-maxRentallays: int

L

| ]
DVD VHS
-zone: int -rewinded: Boolean

Figure 1.4: The updated UML model of the online video rental store, now able
to handle VHS tapes and DVDs.

Now that the UML model has changed, the previously generated relational
model will no longer work with the new system. The UML to relational trans-
formation has to be re-run in order to propagate the changes to the relational
model. However, if the transformation engine doesn’t support change propaga-
tion, the manual changes introduced in the target model will be overwritten. In
this case the Log table would be lost. In this simple example it is only a single
table, but in a real system the manual changes could be many. Figure 1.5 shows
the result of re-running the transformation on the updated UML model.



CHAPTER 1. INTRODUCTION 8

RentalOrder Customer

rentalOrderID: INT Cus D 1
cu ID: INT > name: vARCHAR
movl INT address: VARCHAR
deliveryAddress: WARCHAR
deliveryDate: DATE

INT

N DVD
Movie "H—O'l' movielD: INT
novielID: INT zone: INT

title: VARCHAR
year: DATE
rentalPrice: REAL

maxRentalDays: INT -H—O-l- VHS

movielID: INT

rewinded: INT

Figure 1.5: The result of re-running the transformation on the updated online
video store UML model.

In order to preserve the changes using the merging approach, the new target
model has to be merged with the previously generated target model. In this
simple case it is obvious what the result should be: we want to keep the manual
changes that were added to the old target model. However, in more complex
scenarios, the different types of changes could be many. Figure 1.6 shows what

the resulting merged model should look like.

Log RentalOrder Customer
logID: INT customerID: INT
e - ) IN SHH nane: vaRcHAR
userIh: INT me INT address: VARCHAR
date: DATE deliveryAddress: WARCHAR
time: DATE deliveryDate: DATE
A

Movie

title: VARCHAR
year: DATE
rentalPrice: REAL
maxRentalDays: INT 'H'O'l‘ =
movielD:

rewinded: INT

THNT
LM

Figure 1.6: The merged online video store relational model.



CHAPTER 1. INTRODUCTION 9

1.4 Thesis Overview

Chapter 1 has provided an introduction to the Model Driven Architecture and
has shown the importance of model transformations within this new software
development paradigm. Also, the change propagation problem has been illus-
trated though a simple but meaningful example. An overview of how the model
merging approach can be used to solve the problem has also been given.

The remainder of the thesis is structured as follows: Chapter 2 gives an
overview of software merging techniques used in different domains and discusses
the problem of merging models in the context of a model transformation en-
gine. Chapter 3 shows how the process of detecting changes between two target
models being merged can be solved using a transformation. A delta meta-model
used to keep track of these changes is also introduced. Chapter 4 shows how,
based on the information collected in the change detection phase and the input
received from the user, the models can be merged using a transformation. Fi-
nally, Chapter 5 summarizes the work done and discusses the important issues
that still need to be dealt with in the future.



Chapter 2

The Merging Problem

This thesis explores a model merging approach to deal with the problem of
change propagation. Therefore, it is useful to study the different merging tech-
niques that have been used to solve other similar problems. The next section
provides an overview of software merging and the rest of the chapter describes

the specific details of the model merging problem.

2.1 Software Merging

The problem of software merging has been studied extensively, mainly in the
context of version control mechanisms based on optimistic locking [9]. Most
merge tools employ textual merge techniques, since this approach makes them
very flexible and allows them to work with any text based artifact. However,
the most important limitation of this approach is that the tools know nothing
about the semantics of the artifacts being merged, and thus their ability to
merge conflicts automatically is also limited.

Since in the context of a version control system a common ancestor of the
software artifacts being merged is always available, most tools take advantage of
this and use a three-way merge technique. This type of merge is more powerful
than a two-way merge, since more conflicts can be detected [9]. This technique
involves detecting and representing change in data, usually known as finding
the delta between two files. Textual version control tools usually use deltas to
store the different versions of the files, in order to use less physical space and
minimize network traffic in a distributed environment.

Change detection and representation has also been studied for hierarchically
structured data. In [16], the authors describe an efficient algorithm to derive
the minimum cost edit script that transforms an ordered tree into another. This
involves finding a good match between the two trees, and defining a cost model

10



CHAPTER 2. THE MERGING PROBLEM 11

in order to determine which of the different conforming edit scripts has the
minimum cost. The algorithm doesn’t rely on the existence of object identifiers.
An efficient algorithm for detecting changes in unordered trees has also been
described in [18], in the context of XML files. Finding a good match in unordered
trees without relying on object identifiers is a much harder problem. In this case
the authors take advantage of the specific characteristics of XML files to achieve
efficiency.

In [2] the authors study the problem of merging MOF models, in the context
of a version control system. The algorithm described is similar to the ones used
for change detection in hierarchically structured data, but in this case, since the
structure of the data contained in a model is not constrained to a tree structure,
it relies on the existence of unique object identifiers for the matching process.

Finally, the problem of change preservation has been dealt with in the con-
text of model to text transformations. The Eclipse Modeling Framework pro-
vides a model to text transformation functionality that allows Ecore models to
be transformed automatically into Java code [4]. To do so, EMF relies on the
Java Emitter Templates and JMerge technologies, which provide a framework
for code generation and merging [14, 15]. In order to preserve the changes, JET
uses a tagging strategy based on custom javadoc tags, which are used to guide
a post-generation merge process. When source code is generated automatically
from a model, the generated methods and attributes are marked with the tag
@generated. If the source code generation process is re-run, only the methods
and attributes marked as generated will be overwritten. In order to indicate that
a change must be preserved, the generated tag must be removed or changed to
the tag Qgenerated NOT. The level of granularity is determined by the artifacts

being generated, in this case attributes and methods in classes.

2.2 Model Merging

Tefkat is a model transformation engine that receives one or several source
models as inputs and produces one or several target models as outputs. Models
cannot be modified by Tefkat, only created. Each time a transformation is run a
trace model that relates the objects in the source with the objects created in the
target is generated. There is no support for version control of the models built
in directly, since the engine is only concerned with providing the transformation
functionality. Therefore, in dealing with change propagation using the model
merging approach, the type of merge that is required is two-way, which means
that only the two models being merged are available. A two-way merge is always
state-based. There is no way to know precisely what changes have occurred to

the models since a common parent is not available, as opposed to the case



CHAPTER 2. THE MERGING PROBLEM 12

exposed in [2].
There are several steps involved in the process of merging the two models.

The following sections discuss each one of them.

2.2.1 Detecting Changes

The first step in the model merging process is detecting the changes between
the two target models that are going to be merged. The process of detecting
the changes also involves several steps, which will be explained in the following
subsections.

Finding Matching Objects

The first step in the change detection process is matching the equivalent objects
in the models being merged, in order to know which objects we need to compare
in order to find the differences in their attributes and references. In [2] the
authors rely on unique object identifiers to find the equivalence. In this case the
matching process is trivial: the objects with the same identifiers are considered
equivalent. However, unique object identifiers are not always available, and this
is the case with Tefkat, since it was not designed to impose such a requirement
on the models it operates on.

There are several algorithms that can be used to find matches in structured
data that don’t rely on unique object identifiers [16]. However, these algorithms
cannot be used to find the matching of the models since the structure of an arbi-
trary MOF model is not necessarily hierarchical. Each model can be considered
as a labeled, directed graph. The problem of finding a good match is reduced
to finding an isomorphic subgraph of one of the models in the other, and us-
ing this isomorphism to define the matching. The problem with this approach
is that finding isomorphic subgraphs has been proved to be an NP-complete
problem [10], making it an impractical solution for a real application.

Fortunately, in the case of Tefkat, there is a easier way to achieve the match-
ing. When a transformation is run, a trace model is generated, containing trace
objects that link the target objects with the source objects they were generated
from. The generic trace model is shown in Figure 2.1. Each trace object is
associated with exactly one target object and it may be associated with one or
more source objects. When the transformation is re-run, a new target model is
generated, along with a new trace model, as shown in Figure 2.2.

A model M can be considered a set of objects 0. Let the old target model
be Mrand the newly generated target model Myr. Also, lets introduce two
sets, Dg and D to represent the sets of objects that have been deleted from
the source and target models respectively. The type of the objects is given by



CHAPTER 2. THE MERGING PROBLEM 13

Trace
QU Ces ol -name: EString
0,
N/ tarjpet
Any A4
EObject
T 5
0. %
IntAny stringAny ObjectAny [F=L
-int: EInt -string: EString

Figure 2.1: The generic trace model.

a total function type € M — TYPE, where the set TYPE contains the possible

object types defined in the meta-model. Formally, a trace model is a relation

between objects in the source model and objects in the target model, such that
trace € P1(M UDg) < M UDr. The matching between the objects in M7 and
My can be defined initially as a partial injective function

matching = {(01,02) | 01 € My A 0og € My A Ty pl{02}] = Tnrrl{oi}] A
type(o1) = type(o2)}-

By analyzing the trace models generated in each transformation run, the

equivalent objects can be identified, even if their attribute or reference values

have changed. The following simple algorithm shows how to do this:

1.

Iterate through the objects in the original trace model (TR). For each one
of them check for a dangling reference to the original target model (T).

. If the reference is not dangling then check the reference to the source

model (S).

. If none of the references to the source model is dangling then iterate

through the trace objects in the new trace model (NTR).

. For each object in the new trace model check the reference to the source

model.

. If the set of objects referenced by the new trace object is the same as the

set of objects referenced by the original trace object then check that the
object pointed to by the trace object in the new target model (NT) is of
the same type as the one pointed to by the trace object in the original
trace model.



CHAPTER 2. THE MERGING PROBLEM 14

Trace ETRJl m
}I RentalOrder |

TR1
/%7 } Customer
TR3 =>{ DVD
,|rn4= =>{ VHS

Source EShl /I'-.Iew Trace (NTR] New Target tNThl

RentalOrder 7 |_|INTRJ | }@l

Customer ‘// I_IINTRzl } Customer
DVD WI }@l
VHS & IW[ >l vHs

Figure 2.2: The result of re-running a transformation.

6. If the objects have the same type then a pair of matching objects has been
found.

There are several important things to notice. First, there is no need to check
for dangling references from the new trace model since the merge process is
an atomic operation and the user cannot modify the models while the process
is running. Second, an object in the target model may be related to more
than one object in the source model. For example, in the UML to relational
transformation the generated columns are related to a class and an attribute.
Therefore, when checking for equivalence, the set of objects pointed to in the
source model must be exactly the same for both trace objects being analyzed.
If a reference from a trace object in the original trace model to the source model
is dangling, then the target object referenced by the trace object has no match.
Finally, the type of the objects has to be the same for the objects to be matched.
This check is important because objects with different types may be generated

from the same set of objects in the source model.

Finding Unmatched Objects

Now that the matching objects have been identified, it is simple to determine
which objects in each target model have no corresponding match just by checking
which ones do not belong to the set of matching objects. However, by using
the information in the trace model, it is also possible to determine why the
object is unmatched. There are five different possible reasons for an object to
be unmatched:



CHAPTER 2. THE MERGING PROBLEM 15

Source ES?l

1. An object was deleted from the source model. In this case, when the
transformation is re-run, the target objects related with the deleted object
will not be regenerated and the objects previously generated in the original
target model will be unmatched. Figure 2.3 shows an example of an object
being deleted from the source model, in a simple one to one transformation.
In this case the VHS object in the source model is deleted and the VHS
object in the original target model is now unmatched, since the VHS object
is not regenerated in the new target model. Notice that the trace object in
the original trace model (TR4) now has a dangling reference to the source
model.

This kind of unmatched objects will belong to the original target model.

Trace (TR) m
}I RentalOrder |

—
—>»| VHS

I'«Iew Trace INTRJ New Target liNT!ll

RentalOrder - |I NTR1 |I }I RentalOrder |
Customer = . |I NTR2 |I } Customer
- I—-——j ~
bvo J&— | NTR3 | > bvD
VHS [

Figure 2.3: An example of an object deleted from the source model.

Formally, the set of these objects can be defined as:
{o| o€ Mg Ao €ran(Trgr) AJe.(e € Trp[{o}] Ae € Dg)}.

. An object was added to the target model. In this case there is no trace
object related to the new object since it is added manually to the generated
model. Figure 2.4 shows an example of an object, Beta in this case, being

added to the original target model.

These kind of unmatched objects will also belong to the original target
model. Formally, the set of these objects can be defined as:
{oloe My No ¢ ran(Trr)}

. An object was deleted from the target model. In this case, if none of the
corresponding objects in the source model are deleted, then the object will



CHAPTER 2. THE MERGING PROBLEM 16

Trace (TR) Target fT:ll

""‘-I RentalOrder ]
\""I Customer |
b

TR1
TR2
TR3 oDvD
TRA

VHS

-

b

H

Source [SJI Mew Trace (MTR) | MNew Target (NT) |

"_ 7 |I NTRL |I :‘;-I RantaDrderI
l' /// II NTR2 II } Custormer
m rd II NTR3 II —>{ DVD

) i >

Figure 2.4: An example of an object being added to the target model.

be regenerated in the new target model and will have no match. Figure 2.5
shows an example of an object being deleted from the original target
model. In this case the VHS object is deleted, and since the corresponding
VHS object in the source model is still in the source model then the VHS
object is regenerated in the new target model and is now unmatched.
Notice that the trace object in the original trace model (TR4) now has a

dangling reference to the original target model.

J

Trace (TR} Target (T)
TR1 }I RentalCrder |

~
TR2 —>| Customer
e
TR3 —»| DVD
[T . S - VHS

Source ESi'l /”E"‘ Trace (NTR) New Target INTﬁl

RentalOrder WI }I RentalOrder |
Customer ‘j/ Wl } Customer
DVD II NTR3 FI =>{ DVD
VHS [ IWI =>{ VHs

Figure 2.5: An example of an object being removed from the original target
model.



CHAPTER 2. THE MERGING PROBLEM 17

These kind of unmatched objects will belong to the new target model.
Formally, the set of these objects can be defined as:
{o] 0 € Mny ATygl{0}] € dom(Trr) A Tra(Tyhgl{o}]] € Dr).

4. An object was added to the source model. In this case only the trace object
in the new trace model exists since the added source object didn’t exist
when the original transformation was run. Figure 2.6 shows an example
of an object being added to the source model. In this case the Beta object
is added and the corresponding Beta object is generated in the new target

model.

J

Trace (TR} Target tle
TRL “\I RentalOrder |

TR2 } Customer

TR3 ’,-I DvD |

—
T —=> VHS

New Trace (NTR) Mew Target (NT) |

Source tShI

\Q\\\
]JE]

RentalOrder | NTRL | "‘_;;I Ranial)rderl
— [z N p—
DVD li NTR3 || —»| DVD
VHS ,{E— VHS
[ J< [ims | N

Figure 2.6: An example of an object added to the source model.

These kind of unmatched objects will belong to the new target model.
Formally, the set of these objects can be defined as:
{o| o€ Myt ATxyrgl{o}] & dom(Trr)}.

5. An unknown change has happened in the source model. All the objects
that aren’t matched and that don’t belong to the previous categories fall
into this one. A refactoring in the source model may result in an object
in the original target model being unmatched, since it may be related to
more than one object in the source model. Figure 2.7 shows an example of
a refactoring that produces unmatched objects in both the original target
model and the new target model. This example is based on a UML to rela-
tional transformation. The name attribute, that belongs to the Customer
class, is moved to the RentalOrder class. The corresponding column in
the target model is generated from both the attribute and the class that



CHAPTER 2. THE MERGING PROBLEM 18

contains the attribute. Therefore, when the transformation is re-run, the
new name attribute that is generated is referenced by the same attribute
as in the original transformation but a different class (the RentalOrder
class in this case). Even though the traces have no dangling references,
the set of objects that they point to in the source model is different. This
means that even though the objects are equivalent, they will be recognized
as unmatched by the algorithm. Notice that it is not possible to match
these objects based only on the information provided by the trace analysis.
Similar effects may be produced by changes in the transformation defini-
tion and may also lead to the impossibility to match equivalent objects.

E E RentalCOrder:Table
e \
id:Aftribute @— id:Column
- E Customer:Table
e \
name:Attribute -Jlml name:Column
Trace (TR) m‘
TR1 RentalOrder Table
TR2 id Column
ﬁ Customer-Table
/D ;l"“ name:Celumn
m‘ Trace ETRJ| m‘
RentalCrder:Class E— RentalOrder:Table
id:Attribute E id:Colurnn
name Attribute \E name:Column
Customer:Class E I Customer Table

Figure 2.7: An example of a refactoring in the source model.

These kind of unmatched objects will belong to both target models. For-
mally, the set of these objects can be defined as:
{o| o€ My ATrp[{0}] ¢ dom(Tnrr) AVe.(e € Trpl{o}] = e & Ds)}U



CHAPTER 2. THE MERGING PROBLEM 19
{o] 0 € My ATy7gl{0}] ¢ dom(Trr) AVe.(e € Tyrpl{o}] = e ¢ Ds)}.

Finding the Attributes’ Delta

Once the matching objects have been identified, the process of finding the dif-
ference in their attribute values is straightforward. The algorithm consists of
iterating through the pairs of matching objects and comparing their attribute
values. When a difference is found it must be recorded by keeping track of the

pair of matching objects and the attribute being compared.

Finding the References’ Delta

The process of finding the references that have changed is not as simple. There
are three different types of changes that may be found, depending on the type

of reference:

1. If the reference is single-valued then two changes can occur: the reference
is set to point to a different object or the reference is unset. A single-
valued reference can be defined formally as a partial function singleref €
NAME x M—M. Let Rpi be the set of single-valued references in the
original target model and Ry the corresponding set in the new target
model. Also, lets define a partial injective function matching € Mrp —
My to represent the set of matching objects. The pairs of matching
objects that have a change in this type of reference can be defined as:
{(01,02) | 01 € Mt A0y € MnT A matching(o1) = o AVri,ra,n.(r1 €
RriArg € RyriAn € NAMEAo; — n € dom(r1) Aog — n € dom(rg) =
matching(ri(n,o1)) # r2(n,02))}.

Figures 2.8 and 2.9 show examples of changes in a single-valued reference.

2. If the reference multi-valued and not ordered then a change can occur
if a reference is added or removed from the set of references. An un-
ordered multi-valued reference can be defined formally as a partial func-
tion multiref € NAME x M— P(M). Let Rrn be the set of unordered
multi-valued references in the original target model and Ryryn the corre-
sponding set in the new target model. The pairs of matching objects that
have a change in this type of reference can be defined as:

{(01,02) | matching(o1) = 02 AVri,ra,n.(r1 € Ry Are € Ryrn An €
NAME A o1 — n € dom(ry) Aoz — n € dom(ry) = Jo3,04.(03 €
r1(n,01) A osa € r2(n,02) A matching(os) # o04))} Figure 2.10 shows an

example of a change in an unordered multi-valued reference.



CHAPTER 2. THE MERGING PROBLEM

A very simple metamodel
of a Java class with a
multiplicity one reference
to represent inheritance.

The original target model.
The parent of the personal
account is the account class.

The new target model. The
parent of the personal
account is now the offshore
account class.

JavacClass

-name: S5tring

,O‘IE parent

20

parent

PersonalAccount:javaClass

Account:javaClass

OffShoreAccount:JavaClass

PersonalAccount':JavaClass

Account':JavaClass

OffShore Account':]JavaClass

Figure 2.8: An example of a change in a single-valued reference in which a
reference is set to point to another object.

The original target model.
The parent of the personal
account is the account class.

The new target model. The
parent reference of the

personal account is now unset.

PersonalAccount:]avaClass

parent

PersonalAccount':JavaClass

Account:lavaClass

Account':JavaClass

Figure 2.9: An example of a change in a single-valued reference in which a

reference is unset.

A very simple metamodel
of a Java package that
contains zero or more Java
classes. This is an example
of an unordered multiplicity
many reference.

The original target model.
The com.dstc bank package
contains three classes.

The new target model. The
com.dstc.bank package now
contains different classes.

JavaPackage

-name: S5tring

JavacClass

-name: String

com.dstc.bank:JavaPackage

Account:javaClass

OffShoreAccount:javaClass

— PersonalAccount:|avaClass

Customer:JavaClass

com.dstc bank':JavaPackage

Account':|avaClass

OffShoreAccount':JavaClass

PersonalAccount':JavaClass




CHAPTER 2. THE MERGING PROBLEM 21

3. If the reference is multi-valued and ordered then a change can occur if a
reference is added or removed from the list of references or the position of
one of the references changes. An ordered multi-valued reference can be
defined formally as a partial function orderedref € NAMEx M —iseq(M).
Let Rro be the set of ordered multi-valued references in the original target
model and Ry7o the corresponding set in the new target model. The pairs
of matching objects that have a change in this type of reference can be
defined as:

{(01,02) | matching(o1) = o2 AVri,ra,n.(r1 € Rro ANra € Ryro A
n € NAMEA o1 — n € dom(r1) Aoz — n € dom(re) = Jo3,04.(03 €
ran(ri(n,01)) A og € ran(ra(n,02)) A matching(os) # 04))}U

{(01,02) | matching(o1) = 02 AVri,ro,n.(r1 € Rro Are € Ryro A
n € NAMEA o1 — n € dom(r1) Aoz — n € dom(re) = Jo3,04.(03 €
ran(ri(n,o01)) Aoy € ran(ra(n,02)) Amatching(os) = o4 Ar1(n,01) " os] #
r2(n, 02) " [oa]))}

Figure 2.11 shows an example of a change in an ordered multi-valued

reference.

2.2.2 Gathering User Input

Once the information about the differences in the target models has been col-
lected, the actions that must be taken with respect to each change must be
decided. A simple approach to deal with this problem is to specify a set of
default rules for each type of change. For example, it is probably wise to keep
the objects that have been added to the target model. However, it is likely that
there are some cases in which a different action needs to be taken. Therefore,
the user must be able to manually override the actions for each change. Once
the delta model has been updated with the input gathered from the user the
models can be merged.

2.2.3 Merging the Models

Now that an action has been specified for each difference in the models the
process of merging them is fairly straightforward. However, the actions that
need to be taken depend on the merging strategy. There are two ways in which
the process can be handled: to create a new model or to merge the changes in

place in the new target model. The following sections discuss each case.



CHAPTER 2. THE MERGING PROBLEM

A very simple metamodel| of a Java

class that contains zero or more attributes.
This is an example of an ordered
multiplicity many reference.

The original target model. The
Customer class has four attributes.

The new target model has one more
attribute and the order of the other
attributes has changed.

attributs

22

JavaClass (4=

-name: String

Customer:|avaClass

M, .Y

Attribute

-name: String

Customer':JavaClass

name:Attribute

id:Attribute

address:Attribute

salary:Attribute

salary":Attribute

id' Attribute

name':Attribute

address':Attribute

emailAttribute

Figure 2.11: An example of a change in a multiplicity many ordered reference.

Creating a New Model

If a new model is going to be created then the actions required to merge the

models into this new model are the following:

1. The matching objects and their unchanged attributes and references must

be copied into the new model.

2. The unmatched objects whose associated action is to keep the object must

be copied into the new model.

3. The attributes of the matching objects copied into the new model that



CHAPTER 2. THE MERGING PROBLEM 23

have changed must be set to the value specified in the associated action,
which indicates if the value must be copied from the original target model

or the new target model.

4. The references from the matching objects copied into the new model that
have changed must be set to the value specified in the associated action.
Depending on the type of reference the action will indicate if the value or
relative order of the reference should be copied from the original target
model or the new target model.

Modifying the New Target Model In Place

If the changes are going to be merged into the new target model then the
following actions are needed:

1. The unmatched objects in the original target model that have an asso-
ciated action that specifies that they must be kept in the merged model
must be copied into the new target model.

2. The unmatched objects in the new target model that have an associated
action that specifies that they must not be kept in the merged model must

be removed.

3. The attributes that have changed and have an associated action that spec-
ifies that they must keep the value in the original target model must be

set to the corresponding value.

4. The references that have changed and have an associated action that spec-
ifies that they must keep the value in the original target model must be
set to the corresponding value. Depending on the type of reference the
action will indicate if a reference must be added, changed or moved within

the collection of references.

2.3 Merging In Tefkat

This chapter has shown an algorithm to find the delta between two target models
based on the analysis of the traces that relates them to a common source model.
The next chapter shows how to implement this algorithm using a transformation.
An algorithm to merge the models based on this information and information
gathered from the user was also presented and several ways to handle the merge
process were discussed. Chapter 4 shows how to implement this algorithm also

using a transformation.



Chapter 3

Change Detection

There are several ways to implement the change detection algorithm shown in
Chapter 2. It could be implemented programmatically using the EMF APL
However, detecting changes basically involves querying the models and traces.
Therefore, it makes sense to use the QVT language to solve the problem, since it
was designed specifically to query and transform models. The process of finding
the delta between the models can be considered a model transformation. In this
case the transformation takes the the two target models, the source model and
the trace models as inputs and generates a delta model as an output. This model
not only holds the information about the differences in the target models but
also the actions that should be taken to produce the merged model. The default
actions for each type of change can be specified in a configuration file, and the
model can be modified in order to tweak the actions for particular changes.

3.1 The Delta Model

Figure 3.1 shows the MOF diagram of the delta meta-model. The following
subsections explain the important meta-classes.

24



25

v

UER[90]  pPRYIEW

UEa[00g ;| ul UEa[00q ;| Ul

Ew:__mn_wo:w_wwwm_um_w_u:u_ _Ew:_uw_w_u_Dwocw_wEmm_mEm_ wayeaualagayaburg| liugeyagiasunaousiaayafuls Et._m_m:womm:m_._um.o:w_mwwmw_m:_m_

CHANGE DETECTION

CHAPTER 3.

A_\.\. T FTESN TTI o) O [ ESTYE, & WEATvey 1) o TRl NP TOo TR R TS

NOILOW 39430 dohae st
EErERnEEIEe ETE T it i _ FEEIGTa !
ITESTE = .
e+ % NOILOW 39530 doiae BT % 4B+

_,Et._m_E_wn_wo_._w_w%mx_uw_m_u_Dw_n_:_:E_ _Et._m_mtwowo_._m_w%mxw_n__:_.__.e lupugeyagaouataayafuls

=nqigyy

2N qUIE+

Idualalal+

PUFEY = J=nq U

MOILOS Fodawn
INEA w734

I
HOILDY J9HIW - UolaE _ _
AN %1130 0 puy
L Y AT

ajny Jaain ey

NOILDY Jod3w : Yelare

_ AMIA L1340 pumy

_E_w%ucwéwx_ _E_woﬂsefq_ 1oalqopayeiewn _ Soalgopayaem _

The MOF diagram of the delta meta-model.

Figure 3.1



CHAPTER 3. CHANGE DETECTION 26

3.1.1 Matched Objects

The MatchedObjects class is used to keep track of the objects that are identified
as matching. The t reference points to the object in the original target model
and the nt reference points to the corresponding object in the new target model.
An instance of this class must be created for each pair of matching objects in
order to copy the unchanged parts of the target model into the merged model.

3.1.2 Unmatched Objects

An instance of the UnmatchedObject class is created for each object in the
target models that doesn’t have a matching object. The kind attribute is used
to indicate the reason why the object is unmatched. Section 3.3.2 discusses how
to obtain this information by using the tracking objects. The action attribute
is used to indicate what to do with this object when the models are merged.
Section 3.2 shows how the default actions for each type of change can be set by

creating a model containing instances of the Rule class.

3.1.3 Attributes Delta

The attribute values of the matched objects may have changed. For each pair
of matching objects that have a different value in one of their attributes an
instance of AttributeDelta is created. The ¢ and nt references point to the
pair of objects. For each attribute that has a different value, an instance of
AttributeDeltaEntry is created and added to the entries reference. Each entry
holds the action that must be taken when merging the models.

3.1.4 References Delta

There are several types of changes that may occur when dealing with references,
depending on the type of reference. For each pair of matching objects that have a
different value in one of their references an instance of ReferenceDelta is created.
The t and nt references point to the pair of objects. The following entries are

created depending on the type of reference and change:

e If the reference is single-valued and is now pointing to another object,
then an instance of SingleReferenceChangeDeltaEntry is created. The rt
reference points to the object referred to by ¢. The rnt reference points to
the object that is referred to by nt. However if the reference was unset,
then an instance of SingleReferenceUnsetDelta is created instead. These
cases have to be handled with separate rules since null references must be
dealt with using the methods provided by EMF. This class has a reference,



CHAPTER 3. CHANGE DETECTION 27

r, that points to the object referred to by either ¢ or nt. The reference
in the matching object is going to be unset. A boolean attribute, inT, is
used to indicate if the object is part of the original target model or the
new target model.

e If the reference is multi-valued but not ordered, then for each reference
that refers to a different set of objects in either target model, an instance of
MultipleReferenceDeltaEntry is created. Each object that doesn’t belong
to the intersection of the sets of references from the matching objects must
be reported as a difference. For each one of these objects an instance of
SingleReferenceltem is created. This class has a boolean attribute, inT,
used to indicate to which model does the single reference belong to.

o If the reference is multi-valued and ordered then things get interesting. A
naive approach would be to compare all the references’ values with the
same index and report the ones that differ between the target models.
However, in this case a single change could produce a lot of delta en-
tries if, for example, the first reference of the collection is removed. In
this case all of the other references would be reported as changes since
their index would no longer match. Therefore an approach that takes
the relative order into consideration is used. For each referenced object
without a corresponding match, a SingleReferenceOrderedltem instance
is created. This class inherits from SingleReferenceltem and has an addi-
tional reference, tAfter, that points to the next object in the collection.
This reference is used to insert the reference in the correct relative position
when merging the models. For every matching referenced object that has
a different relative position than its corresponding object, an instance of
OrderedReferencePairltem is created. This class has four references: rt
that points to the object pointed to by t, rtAfter that points to the next
matched object after rt, rnt that points to the object pointed to by nt and
rntAfter that points to the next matched object after rnt.

3.2 Rule Based Configuration

When calculating the delta between the two target models, different kinds of
changes have to be identified. During the merge process, a certain action must
be taken for each change in the delta model. For example, if an unmatched
object is found in the original target model then there are two possible actions
that might be taken during the merge: to keep the unmatched object or not
to keep it. If the value of an attribute of a matched object has changed, then
only one of the values can be kept. In order to provide a default behavior for



CHAPTER 3. CHANGE DETECTION 28

each one of the possible kinds of changes, a model with Rule instances must be
used. The Rule class has two attributes: kind that specifies the kind of change
and action that specifies the default action that must be taken for this kind
of change. The transformation that calculates the delta model uses this model
to set the default actions for the changes it encounters. The actions for each
change in the delta model can then be modified manually, if the default value

is not what the user wants.

3.3 The Change Detection Process

The following sections explain the rules used to find each kind of change.

3.3.1 Object Matching

The matching objects can be determined by the rule in Figure 3.2. In line 41 the
trace objects from the original tracking model and the new tracking model are
selected. The @ is used when there is more than one source model, to indicate
from which one the objects must be selected. Line 42 checks that the original
trace has a valid reference to the original target model, since the object it refers
to may have been deleted. Line 43 checks that the possible matching objects
are of the same type. Lines 44 and 45 make use of the patterns in Figure 3.3
to find the trace objects that point to the same set of objects in the source
model. In order to find them, the negated inverse condition, an existential
quantification, is used. The patterns are finding the trace objects that don’t
point to the same set of objects in the source model by looking for some object
in the source model that is not pointed at by one of the trace objects. By using
the NOT operator this existential quantification can be turned into the original
universal quantification that was required. In line 46 a MatchedObjects instance
is created and its values are set in lines 47 and 48. Finally, the matched objects

are linked with a MatchingObjects instance in line 49.

40 RULE findMatchingObhijectsistr, sShtr)

41 FORALL Traceftr tr, Tracefntr ntr

42 WHERE tr.target.eIsProxyi) = false

43 AD tr.target.eClass() .name = ntr.target.eClass() .name
44  AND NOT (notInMNTR(tr.sources, ntr))

45  AND NOT (notInTRintr.sources, Lr)

45 MAKE Matcheddhiects oo

47 3ET oZo.nt = ntr.target,

45 o0zZo.t = tr.target

49 LINKING MatchingChjects WITH £ = oZo.t, nt = oZo.nt
50 i

Figure 3.2: Rule used to match the corresponding objects in the target models.



CHAPTER 3. CHANGE DETECTION 29

12 PATTERN inNTE(ref, ntr)

13 WHERE ntrs = ntr.sources

14 AND ntrz.eClassi) .nawme = "Chjectiny'

15 MD ntrs.ref = ref

1l

15 PATTERN notInlTR(sources, ntr)

159 WHERE s=ources.eClass|() .name = "Chisctliny'
Z0 AND NOT inMTER (sources.ref, ntr)

21 -

Z3PATTEEN inTR(ref, tr)
Z4 WHERE trs = tr.sources

25 AND trs.eClassi) .name = "Chjectliny™

26 MD trs.ref = ref

27

Z9PATTERN notInTR(sources, tr)

30 WHERE sources.eClass() .nawme = "Chijectlny'
31 AND NOT inTR(sources.ref, tr)

32 o

Figure 3.3: Patterns used to find the matching objects.

3.3.2 Objects

The following sections show the rules used to find the unmatched objects ac-

cording to the reason why they are unmatched.

An Object Was Deleted from the Source Model

The rule in Figure 3.8 is used to find the objects that become unmatched because
of an object being deleted from the source model. In line 53 the trace objects
from the original transformation are selected. Lines 54 to 57 select only those
trace objects that have a dangling reference to the source model, by checking
if one of the references points to a proxy. In EMF, when a the object that a
reference points to cannot be resolved, it is replaced by a proxy. This check is
equivalent to checking for null references in standard Java. Line 58 checks that
the object previously generated in the original target model hasn’t been deleted.
Lines 61 to 63 create the UnmatchedObject instances and set the ref value to
the unmatched object in the original target model, the kind to the corresponding
enumeration value, and the action to the default action specified in the rules.
Finally, the objects are linked with an UnmatchedObjectsInT instance in line
64.



CHAPTER 3. CHANGE DETECTION 30

52 ROLE findChjectsbheletedFrom3ource (s, ref, en, act)
53 FORALL Tracefltr otr

S54WHERE =r = otr.sources

55 AMND =sr.eClass|() .name = "Chisctlny'

56 AND ref = sr.ref

57 MDD ref.eIsProxyi()] = trus

58 AND otr.target.elsProxyi() = false

59 AND RulelLink LINEKES name = "objectbeletedFrom3ource’™, action = act

G0 MAKE UnmatchedChject wmo

61 53ET umo.ref = otr.target,

62 umo.kind = DELTAL KIND.OBEJECT DELETED FROM SOURCE,
63 umo.action = act

54 LINKING UmratchedChjectsInT WITH £ = otr.target

65 -

Figure 3.4: Rule used to find objects that became unmatched because of an
object being deleted from the source model.

An Object Was Added to the Target Model

The rule in Figure 3.5 is used to find the unmatched objects that were added
to the original target model. Lines 68 and 69 select the objects in the original
target model that have no matches. This is possible because the matching
objects were already determined earlier and the results linked. Line 70 uses
the isTarget pattern, shown in Figure 3.6, to ensure that the selected objects
are not the target of any trace objects, since there may also be some of them
that don’t have a match in the new target model because the matching object
in the source model was deleted. Lines 72 to 75 create an UnmatchedObject
instance and set the ref value to the unmatched object in the original target
model, the kind to the corresponding enumeration value, and the action to the
default action specified in the rules. Finally, the objects are linked with an
UnmatchedObjectsInT instance in line 76.

67 RULE finddhjectslddedToTarget (en, act)

ESFORALL (Rt ot

G3WHERE MNOT MatchingChijects LINES t© = ot

7O AND NOT isTarget (ot

71  AND RulelLink LINEKES name = "obhjectlddedToTarget™, action = act
T2 MAKE UmmatchedChject wno

T35ET umo.ref = ot,

74 woo.kind = DELTA KIND.OEJECT ADDED TO TARGET,
75 umo.action = act

T LINKEING UnmatchedCbhbjectsInT WITH £t = ot

77 i

Figure 3.5: Rule used to find objects added to the target model.



CHAPTER 3. CHANGE DETECTION 31

TPATTERN isTarget(T)
8FORLLL Tracefdtr TR
SWHERE T = TR.target
10 3

Figure 3.6: A pattern used to determine if an object is the target of an object
of the original trace model.

An Object Was Deleted from the Target Model

The rule in Figure 3.7 is used to find the objects that became unmatched because
of an object being deleted from the target model. Lines 80 to 82 select the pairs
of trace objects that point to the same sets of objects in the source model. Line
83 filters these pairs by selecting only the trace objects in the original trace that
have a dangling reference to the original target model. Lines 85 to 88 create
an UnmatchedObject instance and set the ref value to the unmatched object
in the new target model, the kind to the corresponding enumeration value, and
the action to the default action specified in the rules. Finally, the objects are
linked with an UnmatchedObjectsInNT instance in line 89.

TORULE finddbhjectsheletedFromTarget (act)

SO0FCORALL Traceftr tr, Tracefntr ntr

S1WHERE NOT [(hotInMNTR(Lr.sources, ntr))

g2 AND NOT (notInTR(ntr.sources, tr))

a3 MDD otr.target.eIsProxyi() = true

g4 AND RulelLink LINES name = "objectleletedFromTarget®™, action = act
S5 MAKE Urnmatcheddbhiject uno

S63ET wmo.ref = ontr.target,

87 woo.kind = DELTA KIND.COBJECT DELETED FROM TARGET
88 umo.action = act

SGOLINKEING UnmatcheddibijectsInNT WITH £ = ontr.target
S0

Figure 3.7: Rule used to find objects that became unmatched because of an
object being deleted from the original target model.

An Object Was Added to the Source Model

The rule in Figure 3.8 is used to find the objects that become unmatched because
of an object being added to the source model. Lines 98 and 99 use the pattern
in Figure 3.9 to select the trace objects in the new trace model that don’t have
a corresponding trace object in the original trace model that points to the same
set of objects. Lines 101 to 105 create an UnmatchedObject instance and set
the ref value to the unmatched object in the new target model, the kind to the
corresponding enumeration value, and the action to the default action specified
in the rules. Finally, the objects are linked with an UnmatchedObjectsInNT

instance in line 105.



CHAPTER 3. CHANGE DETECTION

97 RUOLE finddbhjectsiddedToSource (en, act)

98 FORALL Tracelntr ontr

S99 WHERE NOT hasMatchingTrace (ontr)

100 AND RuleLink LINES name = "obhjectliddedToSource®,
101 MAKE Unmatchedlibijsct umo

102 3ET wmo.ref = ontr.target,

105  wmo.kind = DELTA KIND.OBJECT ADDED TO SOURCE,
104 wmo.action = act

105 LINEING UnmatchedthijsectsInlT WITH © = ontr.target
10e ;

action = act

32

Figure 3.8: Rule used to find objects that became unmatched because of an

object being added to the source model.

34 PATTERN hasMatchingTrace (NTR)

35 FORALL Traceftr TR

36WHERE NOT (notInNTER(TR.sources, NTR))
37 AND NOT (notInTRINTR.sources, TR)
38 A

Figure 3.9: Pattern used to find the matching trace objects from the original

and new trace models.

Unknown Cause

The rule in Figure 3.10 is used to find all the objects in the original target

model that haven’t been identified as matching or as unmatched. Lines 110

and 111 find these objects by using the linking objects created in the previous

rules. Lines 113 to 116 create an UnmatchedObject instance and set the ref

value to the unmatched object in the original target model, the kind to the

corresponding enumeration value, and the action to the default action specified

in the rules. The rule in Figure 3.11 finds this type of unmatched objects in the

new target model.

105 RULE findOtherUmmatchedCbhjectsinTiont)

109 FORLLL Bt ot

110WHERE MNOT UnmatchedChjectsInT LINES t© = ot

111 AND MNOT MatchingOhijects LINES £© = ot, nt = ont
112 AND RulelLink LINKS name = "otherChjectInTarget™,
113 MAEE UnmatchedObisct umo

114 3ET umo.ref = ot,

115 wmo.kind = DELTA KIND.OTHER OBJECT IN TARGET,
116 wmo.action = act

118 =

action = act

Figure 3.10: Rule used to find the objects in the original target model that have

no known cause for being unmatched.



CHAPTER 3. CHANGE DETECTION 33

119 RULE findotherUnmatcheddbhijectsinlT(oL)

1Z20FQRLLL _fEnt ont

121 WHERE MNOT UnmatcheddbijectsInNT LINES nt = ont

122 AND NOT MathoingChjects LINKS © = ot, nt = ont

123 AND BulelLink LINES nawme = "otherChijectInWNewTarget™, action = act
124 HAKE UnmatchedChject wumo

1253ET umo.ref = ont,

126 umo.kind = DELTA KIND.OTHER OBJECT IN MEW TARGET,

127 wwo.action = act

1z8

Figure 3.11: Rule used to find the objects in the new target model that have no
known cause for being unmatched.

3.3.3 Attributes

The rule in Figure 3.12 is used to find the pairs of matching objects that have
some change in their attribute values. In line 131 all the objects in the original
target model are selected. In line 132 the WHERE clause is used to select
only the objects that have a match in the new target model, and the match is
stored in the nt variable. Lines 133 to 138 compare all the attribute values of
the pair and match only the ones that have a different value. Notice that lines
137 and 138 check for the case in which one of the attributes has been unset
by using the EMF elsSet method. Lines 139 to 141 create an AttributeDelta
instance for each object that matched the WHERE clause. Finally, in line 142,
the AttributeDelta instances are linked, since they have to be populated with
the actual changes with another rule, shown in Figure 3.13. In this rule, in line
147 the AttributeDelta instances that had been previously created are selected.
In lines 148 to 154 the attribute values are checked, to see which ones have
changed. Lines 156 to 158 create an instance of AttributeDeltaEntry for each
one of the differences and set the attribute value to the corresponding attribute
and the action to the default action specified in the rules. Line 159 adds this
entry to the corresponding AttributeDelta instance.



CHAPTER 3. CHANGE DETECTION 34

130RULE findittributeleltaic, a, nt, act)

131 FORLLL Bt t

132 WHERE HMatchingChjects LINKS £t = £, nt = nt
133 AND t.eClass() = ©

134 AND c.elllittributes = a

135 AND a.changeshle = true

136 AND (t.§a '= nt.da
137 OR (t.eIsbetia) = true AND nt.eIsSetia) = false)
138 OF It.elzsletia) = false AND nt.els3etia) = true))

139 MALKE Attrilhutelelts ad

1403ET ad.t = &,

141 ad.nt = nt

142 LINKING TToAttributelelta WITH t© = £, ad = ad
143 i

Figure 3.12: Rule used to find the matching objects with differences in their
attribute values.

145 RULE findiAttributeleltaEntriesiad, <, a, nt, act)

146 FORLLL Bt ¢

147 WHERE TTolAttributelelta LINKES £t = £, ad = ad, name = "AttDelta™
143 AND t.eClassi{) = ©

149 ALND c.elllittributes = a

150 AND a.changeshle = true

151 AND nt = ad.nt

152 MND (t.ja != nt.fa

153 OF [t.elzslet(a) = true AND nt.els3etia) = false)

154 OR (t.eIsbheti{a) = false AND nt.eIsSeti(a) = true})

155 AND Rulelink LIMEIZ name = "attributeChanged', actlon = act

156 MAKE AttributebeltaEntry ade FROM adeit, a)
157 3ET ade.action = act,

158 ade.attribute = a,

159 ad.entries = ade

160 ;

Figure 3.13: Rule used to find the differences in the matching object’s attribute
values.

3.3.4 References

Several kinds of changes may occur in references depending on its type. The
following sections show the rules used to find changes for each type of reference.

Single-Valued References

The rule in Figure 3.14 is used to find changes in single-valued references. The
pairs of matching objects are selected in lines 163 and 164, and stored in the ¢
and nt variables. Lines 165 to 169 select the objects’ references that are single-
valued. Line 170 finds the object that is referenced by the ¢ and stores it in the
rt variable. Line 171 finds the object that is referenced by nt and stores it in the
rnt variable. If rt and rnt are not matching objects then a change in this type



CHAPTER 3. CHANGE DETECTION 35

of reference has been found. Line 172 checks this condition. Lines 174 to 178
create a SingleReferenceChangeDeltaEntry instance and set the reference value
to the reference being checked, the 7t value to the object referenced by ¢, the
rnt value to the object referenced to by nt, and the action to the default action
specified in the rules. Finally, the SingleReferenceChangeDeltaEntry instances
are linked with a DeltaEntry instance in line 179.

162 RULE findS3ingleReferencelbeltaEntriesint, rt, rnt)
163 FORALL (Bt t
164 WHERE Matching®hijects LINKS £ = £, nt = nt

165 AND t.eClass() = c

166 AND c.elllReferences = v
167 AND r.changeahble = true
168 AND r.many = false

169 AND t.eIs3etir) = true
170 MND t.ir = rt

171 AND nt.§r = rnt
172 AND NOT MatchingChijects LINES £ = rt, nt = rnt

173 AND FRulelLink LINEZ name = "referenceChanged", action = act
174 MAKE SingleReferenceChangeDeltaEntry & FROM fsrit, r)
1753ET e.reference = r,

176 e.rt = rt,

177 e.rnt = rnt,

178 e.action = act

179 LINEING DeltaEntry WITH £ = £, nt = nt, entry = e
is0

Figure 3.14: Rule used to find changes in single-valued references.

Figure 3.15 shows the instances that are created by the transformation when
dealing with the example in Figure 2.8.

ReferenceDelta

t = Personal Account
nt = Personal Account'

:SingleReferenceChangeDeltaEntry

reference = parent
action = KEEP_NT VALUE
rt = Account

rnt = Offshore Account

Figure 3.15: The result of running the delta transformation on the example
shown in Figure 2.8.

The rules in Figures 3.16 and 3.17 are used to deal with the cases in which

the single-valued references have been unset instead of being set to point to a



CHAPTER 3. CHANGE DETECTION 36

different object. The objects created by these rules are instances of SingleRef-
erenceUnsetDeltaEntry.
152 RULE findSinglellnsetReferencebeltaEntriesInTint, rnt)

153 FORALL (Bt ¢
154 WHERE Matching®hijects LINKS £ = £, nt = nt

155 AND t.eClass() = c

186 AND c.elllReferences = v

157 AND r.changeabhle = true

158 AND r.many = false

159 AND t.eIs3et(r) = false

190  AND nt.eIsSetir) = true

191 AND nt.§r = rnt

1592 AND RulelLink LINES nawe = "referenceChanged™, action = act

193 HAKE SingleReferencellnsetDeltaEntry e FROM fsurtit, r)
194 3ET e.reference = r,

195 e.t = rnt,

196 e.inT = true,

197 e.action = act

1983 LINEING DeltsEntry WITH £ = £, nt = nt, entry = &

199

Figure 3.16: Rule used to find changes in single-valued references that have been
unset in the original target model.

Z01RULE find3inglelnsetReferenceleltaEntriesInNT (nt, rtL)
Z0ZFORALLL (Bt ¢
203 WHERE MatchingChjects LINES £ = £, nt = nt

204 AND t.eClassi) = o

205% ALND c.elllReferences = ¢

206 AND r.changeable = trus

207  AND r.mwany = false

208 AND t.eIs3etir) = true

209 AND t.ir = rt

210 AND nt.eIsSet(r) = false

211 AND RuleLink LINEZ name = "referenceChanged', actlon = act
212 MAKE SingleReferencelnsetDeltaEntry & FROM fsurnt(t, )

213 3ET e.reference = r,

214 e.t = rt,;

215 e.inT = false,

216 e.action = act

217 LINEING DeltaEntry WITH £ = £, nt = nt, entry = e
218

Figure 3.17: Rule used to find changes in single-valued references that have been
unset in the new target model.

Figure 3.18 shows the instances created by the transformation when dealing
with the example shown in Figure 2.9. In this case there is only one reference
to keep track of, because the other reference is unset. The inT attribute is used
to indicate to which target model the reference that is set belongs to.



CHAPTER 3. CHANGE DETECTION 37

ReferenceDelta

t = PersonalAccount
nt = Personal Account'

:SingleReferencelUnsetDeltaEntry

reference = parent
action = KEEP_REFERENCE
t = Account

inT = true

Figure 3.18: The result of running the delta transformation on the example
shown in Figure 2.9, assuming the default action for this type of change is
keeping the reference that is set.

Multi-Valued Unordered References

The rules used to find these changes must make use of the sets of objects that
each reference points to. The rule in Figure 3.19 links these sets in the original
target model and the one in Figure 3.20 links these sets in the new target model.

ZZ0RULE linkUnorderedReferencesTarget (EL)
221FORALL Bt ¢

ZZZ WHERE t.ellassi) = o

223 AND c.elllReferences = r

224 AND r.changeable = Lrue

225 LND r.ordered = false

226 AND t.elIs3etir) = true

227 MD t.ir = rt

228 LINEING UnorderedRefT WITH £t = £, rt = £t, ref = r
229

Figure 3.19: Rule used to link the sets of objects pointed to by the multi-valued
unordered references in the original target model.

Z31RULE linkUnorderedReferencesNewTarget (rnt)

232 FORALL _Ent nt

233 WHERE nt.eClassi) = ¢

234 ALND c.elllReferences = ¢

235 AND r.changeable = trus

236 LND r.ordered = false

237  AND nt.elIs3eti(r] = trus

238 AND nt.§r = rnt

ZI9LINEING UnorderedRefNT WITH nt = nt, rnt = rnt, ref = r
240 ;

Figure 3.20: Rule used to link the sets of objects pointed to by the multi-valued
unordered references in the new target model.



CHAPTER 3. CHANGE DETECTION 38

The objects that don’t belong to both sets may or may not have a match-
ing object. In the example shown in Figure 2.10, the set of objects referred
to by the package in the original target model is {Account, OffshoreAccount,
PersonalAccount}. The set in the new target model is {Account, LocalAc-
count, Customer}. Therefore, the objects that don’t belong to both sets are
OffshoreAccount, PersonalAccount, LocalAccount and Customer. From these
objects only LocalAccount is unmatched. OffshoreAcount and Personal Account
are both referred to in the original target model. Customer is referred to in the
new target model.

In order to find all these changes two pairs of rules are needed. The first
pair deals with the objects that are referred to in the original target model. The
rule in Figure 3.21 deals with the case in which the objects are matched and the
one in Figure 3.22 with the case in which the objects are unmatched. Notice
that the only difference between them lies in the WHERE clause. In the first
rule, the matching objects from the set of referred objects in the original target
model are looked up in line 246 and then line 247 checks which ones don’t belong
to the set of referred objects in the new target model. In the second rule, line
261 just checks for objects in the set of referred elements in the original target
model that don’t have a matching object in the new target model. The result
of running these rules on the example in Figure 2.10 is shown in Figure 3.23.

The second pair of rules is analogous to this one but deals with the objects
referred to in the new target model. The rules are shown in Figure 3.24 and
Figure 3.25. The result of running these rules on the example in Figure 2.10 is
shown in Figure 3.26.

242 RULE findMultipleReferenceltemsFromTint, rt, r, act)
243 FORALL Bt t©

Z44 WHERE MatchingChiects LINKES t =

245 AND UnorderedRefT LINEZS © = £, rt = rt, ref = ¢

246  AND (MatchingObhijects LINKS £ = rt, nt = rnt

247 AND NOT UnorderedRefNT LIMNES nt = nt, rnt = rnt, ref = r)
245 AND RulelLink LINKES name = "singleReference", action = act
249 MAKE SingleReferenceltem 1 FROM fmr(t, rt)

2508ET i.t = rt,

251 i.inT = true,

252 i.action = act,

253 i.matched = true

254 LTMEING SingleItem WITH £ = £, itewm = i, ref = r

255

Figure 3.21: Rule used to find references to matched objects that have been
added to a multi-valued unordered reference in the original target model.



CHAPTER 3. CHANGE DETECTION 39

257 RULE findUnmatchedMultipleFeferenceltemsFromT (nt, rt, rnt, r, act)
Z58FORALLL Bt ¢

259 WHERE MatchingChjects LINES £ = £, nt = nt

260  AND UnorderedRefT LINES ¢ = &, rt = rt, ref = r

261 AND NOT MatchingChjects LINEKS £ = rt, nt = rnt

262 AND RuleLink LINES nawme = "singleReference', action = act
263 MAKE SingleReferenceltem 1 FROM fmr(t, £L)

2643ET i.t = rt,

265 i.inT = true,

206 i.action = act,

267 i.matched = false

268 LINEING Singleltem WITH £ = £, itew = i, ref = r

262

Figure 3.22: Rule used to find references to unmatched objects that have been
added to a multi-valued unordered reference in the original target model.

:SingleReferenceltem :SingleReferenceltem
action = KEEP_NT_VALUE action = KEEP_NT_VALUE
t = OffshoreAccount t = PersonalAccount
inT = true inT = true
matched = true matched = true

Figure 3.23: The result of running the first pair of rules on the example shown
in Figure 2.10.

Z271RULE findMultipleReferenceltemsFronMT(t, rnt, £, act)
272 FORALL [Ent nt

273 WHERE MatchingChjects LINEIS £ = £, £ = nt

274 AND UnorderedRefNT LINES nt = nt, rnt = rnt, ref = r
275 AND (HMatchingChjects LINEKS £ = rt, nt = rnt

276 AND NOT UnorderedRefT LINES £ = £, rt = rt, ref = r)
277  AND RuleLink LIMES name = "singleReference', actlion = act
278 MAEE SingleReferencelter i FROM fmwr(nt, rnt)

ZT95ET i.t = rnt,

280 i.inT = false,

2581 i.action = act,

2582 i.matched = crue

283 LINKING Singleltem WITH £ = £, itew = i, ref = r

284

Figure 3.24: Rule used to find references to matched objects that have been
added to a multi-valued unordered reference in the new target model.



CHAPTER 3. CHANGE DETECTION 40

286 RULE findUnmatchedMultipleFReferenceltemsFromlT (L, rt, rnt, r, act)
Z287FORLLL [Ent nt

288 WHERE MatchingChjects LINES £ = £, nt = nt

289 AND UnorderedRefNT LINES nt = nt, rnt = rnt, ref = r

290  AND NOT MatchingCbhjects LIMNES £ = rt, nt = rnt

2891 AND RuleLink LINES nawe = "singleReference', action = act
292 MAKE SingleReferenceltem 1 FROM fmr (nt, rnt)

293 58ET i.t = rnt,

294 i.inT = false,

295 i.action = act,

296 i.matched = false

Z97LIMKEING SinglelItem WITH ¢ = £, itew = i, ref = r

295

Figure 3.25: Rule used to find references to unmatched objects that have been
added to a multi-valued unordered reference in the new target model.

:SingleReferenceltem

:SingleReferenceltem

action = KEEP_NT_VALUE
t = LocalAccount

inT = false

matched = false

action = KEEP_NT WALUE
t = Customer

inT = false

matched = true

Figure 3.26: The result of running the second pair of rules on the example shown
in Figure 2.10.

The rule in Figure 3.27 looks for the items created with the previous rules
based on the referencing object and the reference, and groups them into a sin-
gle entry. The final result of running the transformation on the example in
Figure 2.10 is shown in Figure 3.28.

JO00RULE findMultipleReferenceleltaEntries(nt, 1)
301FORALL Bt t
30Z WHERE MatchingChjects LINEIS £ = £, nt = nt

303 AND t.eClassi{) = ©

304 ALND c.elllPReferences = ¢

305 AND r.changeable = trus

306 AND r.many = true

307 LND r.ordered = false

308 AND t.els3etir) = true

309 AND RefLink LINKS sroc = t, tgt = i, ref = r, nawe = "singleItews"
310 MAKE MultipleReferenceleltaEntry e FROM fsrit, )
311 3ET e.reference = r,

312 e.items = 1

313 LINEING DeltaEntry WITH £ = £, nt = nt, entry = &
314 ;

Figure 3.27: Rule used to group unordered multi-valued reference changes.



CHAPTER 3. CHANGE DETECTION 41

ReferenceDelta

t = com.dstc.bank
nt = com.dstc.bank’

:MultipleReferenceDeltaEntry

reference = contents

:5ingleReferenceltem :SingleReferenceltem :SingleReferenceltem SingleReferenceltem
action = KEEP_NT_VALUE action = KEEP_NT_VALUE action = KEEP_NT_VALUE action = KEEP_NT_VALUE
t = OffshoreAccount t = PersonalAccount t = LocalAccount t = Customer
inT = true inT = true inT = false inT = false
matched = true matched = true matched = false matched = true

Figure 3.28: The result of running the delta transformation on the example
shown in Figure 2.10.

Multi-Valued Ordered References

The rules used to find changes in ordered references must use the sets of objects
that each reference points to. The rule in Figure 3.19 links these sets in the
original target model and the one in Figure 3.20 links these sets in the new
target model, just like in the unordered case. However, since the references are
ordered, apart from linking the sets of objects, a relative order between the
objects must also be established. In order to keep track of the order, instances
of the RelativeOrderT and RelativeOrderNT classes must be created. These
instances store the matching object that follows each object in a multi-valued
ordered reference.

316RULE linkOrderedReferencesTarget (rt)
317FORALL Bt ¢

318WHERE t.=Classi) = ¢

312  ALND c.elllReferences = ¢
320 AND r.changeable = trus
321 ALND r.ordered = true

322 MDD t.eIsletir) = trus
323  AND t.ir = rt

J24 LINKEING OrderedRefsLinkT WITH & = £, r&t = rt, ref = r
3z5 ;

Figure 3.29: Rule used to link the sets of objects pointed to by the multi-valued
ordered references in the original target model.



CHAPTER 3. CHANGE DETECTION 42

F27RULE linkOrderedReferenceslewTarget (Ent)

3Z8FORLLL [@nt nt

FZ29WHERE nt.eClassi() = o

330 ALND c.elllReferences = ¢

331 AND r.changeable = Lrue

332 MND r.ordered = true

333 AND nt.els3et(r] = true

334 AND nt.ir = rnt

F35LINEING OrderedRefsLinkNT WITH nt = nt, rnt = rnt, ref = ¢
336 ;

Figure 3.30: Rule used to link the sets of objects pointed to by the multi-valued
ordered references in the new target model.

The patterns in Figure 3.31 are used to find this relative order. The isNex-
tInT pattern receives a referring object (refObj), a reference (ref), a referred
object (0bj) and an object that is possibly the next matched object in the col-
lection of ordered references (next) as parameters, all from the original target
model. If the object is in fact the next matched object in the ordered collection
then the pattern matches. Lines 346 and 347 check that both obj and next are
referenced by refObj. Line 348 ensures that next is not an unmatched object.
This is necessary because the relative order must not use unmatched objects as
points of reference since they may not be present in the merged model. Lines
349 and 350 check that obj is before next and that there is no matching object
between them. If this condition is met then nezt is in fact the next matching
object that follows obj. A similar pattern, isNextInNT, is used to establish the
relative order in the new target model. A dummy object must be linked after
the last object in the multi-valued references, in order to indicate that it is the

last element in the collection.



CHAPTER 3. CHANGE DETECTION 43

JIGPATTERN existsMatchedBetweenInT(reflhi, ref, ohj, next)
339FORALL Bt ¢

J40WHERE MatchingObiects LINES £ = £, nt = nt

341 AND obj BEFORE t IN refcChj.jref{}

342 AND r BEFORE next IN refchi.dref{}

343 H

J45PATTERN isMNextInT(reflhi, ref, ohj, next)
346 WHERE refobh].jref{}.index0f(okb]) '= -1
347  AMD refchi.Sref{}.index0f (nextc) != -1

345 AND MatchingChjects LINES £ = next, nt = nt

343  AND obj BEFORE next IN refohi.irefi}

350 AND NOT existsMatchedBEetweenInTirefCh]j, ref, obj, next)
FI5F

J0T7PATTERN existsMatchedBetweenInlT (reflh]y, ref, ohj, next)
3ESFORALL _Ent nt

FJ69WHERE MatchingObijects LINKES £ = £, nt = nt

370 AND obj BEFORE nt IN refch]j.dref{}

371 AND nt BEFORE next IN refchj.jref{}

372 H

FVEPATTERN isMNextInNTirefcCh], ref, ohj, next)
375 WHERE refcbj.jref{}.index0f(ohj) != -1
376  AND refocbh].$ref{}.indexOf (next) != -1

377 AND MatchingObijects LINES src = t, tgb = next

378 AND obj BEFORE next IN refchj.irefi{}

379 AND NOT existsMatchedBetweenInMNT(refchij, ref, obj, next)
Iso

Figure 3.31: Patterns used to establish the relative order in the multi-valued
ordered references.

353 RULE linkRelativelrderT(r, nt, rt, rnt)
354FORLLL Bt £, [t next

355 WHERE t.ellassi) = o

356 LND c.elllReferences = ¢
357 AND r.changeable = Lrue
358 AND r.many = true

352 ALND r.ordered = true

Jpd  AND t.eIs3etir)] = true
361 AND t.ir = rt

3n2 MD isMNextInT(t, £, rt, hext)

363 LINKEING FelativeOrderT WITH ohj = rt, next = next, referencingChject = t,
364 reference = r

365

Figure 3.32: Rule used to link the the relative order of the multi-valued ordered
references in the original target model.



CHAPTER 3. CHANGE DETECTION 44

3582 RULE linkRelativelrderNT(r, t, rt, rnt)
383 FORALL @nt nt, [nt next

354 WHERE nt.eClassi() = o

385 LND c.elllReferences = ¢

386 AND r.changeable = Lrue

387 AND r.many = true

388 LND r.ordered = true

389 AND nt.eIs3etir) = trus

390 AND nt.§r = rnt

391  AND isNextInMNT(nt, r, rht, next)

392 LINEING FelativeOrderLinkMNT WITH ok) = rnt, next = next, referencingthject = nt,
3893 reference = r

394

Figure 3.33: Rule used to link the the relative order of the multi-valued ordered
references in the new target model.

Once the relative order is linked, the rule in Figure 3.34 is used to find the
matching objects that belong to both sets of references but that have a different
relative order. Lines 397 and 398 select the matching objects and store them
in the t and nt variables. Lines 399 to 403 use the relative order link to find
the objects referenced by ¢ and nt and stores them in the objT and objNT
variables. It also finds the objects that follow 0bjT and objNT in the multi-
valued reference and stores them in the nextT and nextNT variables. Line 404
checks that nextT and nextNT are not matching objects, which means that a
change in the relative order has occurred. The result of running these rules on

the example in Figure 2.11 is shown in Figure 3.35.

396 RULE findOrderedReferenceltemsint, £, objT, nextT, objNT, nextNT, act)
397FORALLL Bt t

398 WHERE MatchingChjects LINES £ = £, nt = nt

399  AND RelativeOrderLinkT LINES ohj = obiT, next = nextT, referencingCthiect = ¢,
400 reference = ¢

401 AND RelativeOrderLinkNT LINES obij = obijlNT, next = nextlT,

40z referencingChject = nt, reference = r

403 AD MatchingChiects LINES t© = obijT, nt = objlT

404  AND NOT MatchingCbhjects LINES £ = nextT, nt = nextlNT

405 AND Rulelink LIMES name = "referencedrderChanged”™, action = act

406 MAKE OrderedPBReferencePairltem i FROM foriit, objT, nt, okjNT)

407 3ET i.re = ohiT,

408 i.rtifter = nextT,

409  i.rnt = ohijNT,

410 i.rntifter = nextlNT,

411 i.action = act

412 LINKEING OrderedItem WITH £ = £, itewm = i, ref = r

413 4

Figure 3.34: Rule used to find the changes in the order of the references in the
multi-valued ordered references.



CHAPTER 3. CHANGE DETECTION

45

:OrderedReferencePairltem

:OrderedReferencePairltem

:OrderedReferencefairltem

action = KEEP T WALUE

action = KEEP T WALUE

action = KEEP T WALUE

rt = name rt = address rt = salary

rtAfter = id rtAfter = salary rtAfter = END_OF REF
rnt = name rnt = address rmt = salary

rntAfter = address rntAfter = END_OF REF rntAfter = id

Figure 3.35: The result of running the findOrderedReferenceltems rule on the
example shown in Figure 2.11.

A change in the order is not the only difference that may exist when com-
paring multi-valued ordered references. References to other objects may also
have been added. The process of identifying these changes is similar to the one
used for the multi-valued unordered references with the exception that, since
in this case the order does matter, a reference to some object in the collection
of references must be kept in order to know where to insert the new reference,
if the user decides to keep it. Following the same pattern used for establishing
the order, this reference should point to the object that goes immediately after
the new referred object. In this case there are also two pairs of rules used to
identify these changes, shown in Figures 3.36, 3.37, 3.38 and 3.39. The only
difference with the rules used to find the changes in the unordered references is
that these ones create instances of the SingleReferenceOrderedItem and set the
rtAfter variable by using the previously established relative order. The result
of running these rules on the example in Figure 2.11 is shown in Figure 3.40.

The rule in Figure 3.41 looks for the items created with the previous rules
based on the referencing object and the reference, and groups them into a sin-
gle entry. The final result of running the transformation on the example in
Figure 2.11 is shown in Figure 3.28.

The last step in finding the delta for the references is to group all the entries
into a single ReferenceDelta object. The rule in Figure 3.43 does this by using
the information linked in the previous rules when creating the entries. Line 526
selects all the objects in the original target model. Line 527 uses the DeltaEn-
try objects, which relate the entries with their corresponding pair of matching
objects, to find the pairs of matching objects with changes in their references.
Lines 528 to 531 create a ReferenceDelta instance for each one of these pairs
and add the corresponding entries created previously.



CHAPTER 3. CHANGE DETECTION 46

415 RULE findHMatchedOrderedPReferenceltemsFromT (nt, rt, rtifter, rnt, act)
416 FORALL Bt ¢
417 WHERE MatchingChjects LINES £ = £, nt = nt

418 AND t.eClassi) = ¢

419  ALND c.elllReferences = ¢
420 AND r.changeable = trus
421 AND r.many = true

4z2 AND r.ordered = true

G423 AD t.els3et () = Lrue

424  AMND t£.ir = rt
425 AND (MatchingChjects LINKES £ = rt, nt = rnt

426 AND NOT OrderedRefNT LINES nt = nt, rnt = rnt, ref = r)
427  AND RelativeOrderLinkT LINMES ohj = rt, next = rtifter,
428 referencingthiect = t, reference = ¢

429  AND RuleLink LIMNES name = "singleReference', actlion = act

43I0MALKE SingleReferencelrderedItem i FROM fmwrit, rt)
43153ET i.t = rt,

432 i.inT = true,

333 i.action = act,

434 i.matched = true,

435 i.rifter = rtifter

436 LINEING OrderedItem WITH £ = £, itew = i, ref = r
437 :

Figure 3.36: Rule used to find references to matched objects that have been
added to a multi-valued ordered reference in the original target model.

439 RULE findUnmatchedOrderedReferenceltemsFromTint, rt, rtlfter, rnt, act)
240FORALL Bt ¢
441 WHERE MatchingObijects LINES £ = £, nt = nt

342 AND t.eClass() = o

443 AD c.elllReferences = ¢
444  AND r.changeable = true
445  AND r.mwany = true

445  LND r.ordered = true

447 AND t.els3etir) = true
445 AMND t.ir = rt

449  AND NOT MatchingCbhjects LINKS £ = rt, nt = rnt

450 AND RelativeOrderLinkT LINES ohj = rt, next = rtifter,
451 referencingChject = £, reference = £

452 AND RuleLink LINEKES naswme = "singleReference', action = act
453 MAKE SingleReferenceltem 1 FROM fmr(t, Et)

454 3ET i.t = rt,

455 i.inT = true,

456 i.action = act,

457 i.matched = false,

455 i.rifter = rtifter

459 LINEING OrderedItem WITH £ = £, itewm = i, ref = ¢

460 ;

Figure 3.37: Rule used to find references to unmatched objects that have been
added to a multi-valued ordered reference in the original target model.



CHAPTER 3. CHANGE DETECTION 47

46z RULE findHMatchedOrderedReferenceltemsFromlTint, rt, rnt, rntifter, act)
463 FORLLL Ent nt

464 WHERE MatchingChjects LINES £ = £, nt = nt
4p5  AND nt.eClassi() = o

466 LND c.elllPReferences = ¢

4p7  AND r.changeable = trus

465 AND r.many = true

45658 LND r.ordered = true

470  AND nt.els3et(r) = true

471  AWD nt.ir = rnt

472 AND (MatchingChjects LINKES & = rt, nt = rnt

473 AND NOT OrderedRefT LINES £ = t, rt = rt, ref = r)

474  AND RelativeOrderLinkNT LIMNES okhj = rnt, next = rntlifter,
475 referencingChiject = t, reference = ¢

476 AND RuleLink LIMNES name = "singleReference', actlion = act

477TMAEE SingleOrderedReferenceltem i FROM fmwrit, rt)
478 53ET i.t = rnt,

479 i.inT = false,

450 i.action = act,

451 i.matched = true,

452 i.rifter = rntifter

4533 LITNEING OrderedItem WITH £ = £, itew = i, ref = r
454

Figure 3.38: Rule used to find references to matched objects that have been
added to a multi-valued ordered reference in the new target model.

4536 RULE findUnmatchedlrderedReferenceltemsFronlT (nt, rt, rnt, rntifter, act)
437FORALL _Ent nt

45383 WHERE MatchingObijects LINKES £ = £, nt = nt

4539  AND nt.eClassi) = o

490 LND c.elllReferences = ¢

491 AND r.changeable = Lrue

492 MD r.many = true

493 AND r.ordered = true

494  AND nt.eIs53etir] = trus

4395 AND nt.§r = rnt

496  AND WNOT MatchingObijects LINKS £ = rt, nt = rnt

497  AND RelativeOrderLinkNT LINES okhj = rnt, next = rntlifter,
495 referencingChiject = t, reference = r

499  AND RuleLink LIMNES name = "singleReference', actlon = act
SO00MAEE SingleOrderedReferenceItem i FROM fwr (nt, rnt)

S013ET i.t = rnt,

502 i.inT = false,

S503 i.action = act,

504 i.matched = false,

505 i.rifter = rntifter

506 LIMETING OrderedItem WITH £ = £, itew = i, ref = r

sa7

Figure 3.39: Rule used to find references to unmatched objects that have been
added to a multi-valued ordered reference in the new target model.



CHAPTER 3. CHANGE DETECTION

:SingleReferenceOrderedltem

action = KEEP_REFERENCE
t = email

tAfter = ENF_OF_REF

inT = false

matched = false

48

Figure 3.40: The result of running both pairs of rules on the example shown in

Figure 2.11.

SO09RULE findOrderedReferencebeltaEntriesint, i)
C10FORALL Bt ¢

511 WHERE MatchingObijects LINES £ = £, nt = nt

51z AD t.eClass() = o

513 AND c.elllReferences = r

514 AND r.changeable = Lrue

515 AND r.many = true

516 ALND r.ordered = true

517 AND t.eIsSetir] = true

515 AND OrderedItewm LINES £ = £, item = i, ref = ¢
519 MAKE MultipleQrderedReferencebeltaEntry & FROM forde(t, r)
SZ203ET e.reference = r,

521 e.itewms = i

522 LINEING DeltaEntry WITH £ = £, nt = nt, entry = e
523 i

Figure 3.41: Rule used to group ordered multi-valued reference changes.

ReferenceDelta

t = Customer
nt = Customer*

:MultipleOrderedReferenceDeltaEntry

reference = attributes

:OrderedReferencePairltem

:OrderedReferencePairltem

:OrderedReferencePairltem

:SingleReferenceCrdereditem

action = KEEP_T_VALUE
rt = name

riAfter = id

rnt = name'

rntAfter = address’

action = KEEP_T_VALUE
rt = address

rtAfter = salary

rmt = address’
rntAfter = END_OF_REF

action = KEEP_T_VALUE
rt = salary

rtafrer = END_DF_REF
mt = salary'

rntafter = id

action = KEEP_REFERENCE
t = email

tAfter = ENF_OF_REF

inT = false

matched = false

Figure 3.42: The

shown in Figure 2.

result of running the delta transformation on the example

11.




CHAPTER 3. CHANGE DETECTION 49

SZ5RULE findReferencelbeltale, nt)

SEZ6FORALL Bt t©

S527WHERE DeltaEntry LINES £t = t, nt = nht, entry = e
528 MALKE Referencelelta rd

5Z93ET rd.t = €,

530 rd.nt = nt,

531 rd.entries = &

532 ;

Figure 3.43: Rule used to group all the entries into a single ReferenceDelta
object.



Chapter 4

Model Merging

Now that the delta between the models has been calculated and the information
from the user collected, it is possible to merge the models. Recall that the merge
process can be handled in several ways. The merging can be done in place in
the new target model by modifying it, or a new model can be generated and
the all the necessary objects from the target models copied into it. In order
to use a Tefkat model transformation to handle the merge process, only the
second approach can be used since Tefkat cannot modify the models it operates
on. Merging the models can be considered a model transformation that receives
both target models and the delta model as inputs and generates the merged

model as an output.

4.1 The Merging Process

The following sections explain the rules used to merge the target models.

4.1.1 Matched Objects

The objects that were identified as matching in the change detection process
should be copied into the merged model. The rule in Figure 4.1 iterates through
all the objects in the original target model and the new target model and uses
the pattern shown in Figure 4.2 to determine which ones are matching (lines 29
and 30). Then, in line 31, it copies each matched object from the new target
model into the merged model. It is irrelevant from which target model the
objects are copied since they are equivalent. Notice that the object’s attributes
and references are not copied. Finally, in line 32, the newly created object is
linked with its matching objects in the original target model and the new target

model.

50



CHAPTER 4. MODEL MERGING 51

ZBGRULE copyMatchedOhijectsi(t, nt, mt)

ZOFORLLL Bt t, Bnt nt

JOWHERE areMatched(t, nt)

31MAKE EXACT ént.eClass() mt FROM cmo(nt)

32 LINETNG MatchingChijects WITH © = £, nt = nt, mt = mt
33 i

Figure 4.1: Rule used to copy the matched objects from the target models into
the merged model.

10PATTERN areMatched(T, NT)

11 FORALLL MatchedChjectsidelta MO
1ZWHERE T = MO.t

13 AND NT = MO.nt

14

Figure 4.2: Pattern used to determine if two objects are matched.

The new objects that have been created still have their attributes and ref-
erences unset. The rule in Figure 4.3 copies the attribute values that haven’t
changed from the new target model. In this case it is also irrelevant from which
target model they are copied since the values are the same. In order to determine

which attributes haven’t changed, the pattern in Figure 4.6 is used.

95 RUOLE copyUnchangedittributesi(t, nt, mt, a)

S5 WHERE MatchingUbhijects LINKES nt = nt, £t = t, mt = mt
97  AMD nt.eClass() = c

98 AND c.ellliccributes = a

99  AND a.changeable = true

100 AND MOT attributeChangedint, a)

1015ET wt.%a = nt.5a

102 A

Figure 4.3: Rule used to copy the matching object’s attribute values that haven’t
changed.

16 PATTERN attributeChanged(3, i)
17FORLLL AttributeDeltaEntry@delta att
1S WHERE 3 = att.owner.nt

18 AND A = att.attribute

2o

Figure 4.4: Pattern used to determine if a matching object’s attribute values
have changed.

The rule in Figure 4.5 copies the references that haven’t changed in the same
way by using the pattern in Figure 4.6.



CHAPTER 4. MODEL MERGING 52

126 RULE copyUnchangedReferences(t, nt, mwt, r, rL, rnt, rmwt)
127 WHERE MatchingChjects LINES £ = £, nt = nt, mt = mwt

128 AND nt.eClass|) = c

129 ALND c.elllReferences = ¢

130  AND r.changeshle = true

131 AND rnt = nt.3r

132 AD MatchingChijects LINES £ = rt, nt = rnt, mt = rmt
133 AND NOT referenceChangedint, r)

134 3ET mwt.5r = rmt

135

Figure 4.5: Rule used to copy the matching object’s references that haven’t
changed.

22 PATTERN referenceChanged|NT, R)
Z3FORALL ReferenceDeltaEntry@delta ref
Z4WHERE NT = ref.owner.nt

25 LMD B = ref.reference

Za  ;

Figure 4.6: Pattern used to determine if a matching object’s references have
changed.

4.1.2 TUnmatched Objects

The unmatched objects in both target models that have been selected to be kept
in the merged model must be copied. The rule in Figure 4.7 is used to copy
the ones in the original target model. Line 36 selects all the UnmatchedObjects
instances from the delta model. Lines 37 to 39 select only the ones in the original
target model. Recall from section 2.2.1 that the unmatched objects that belong
to the original target model are the ones that were added manually to it, the
ones that remain from an object that existed previously in the source model
and has now been deleted, and all other objects in it that have no match and

whose cause for being unmatched is unknown.

J5RULE copyUrmatcheddhiject=sT(L, act, kind)

36 FORALL Unmatchedobhjectidelta wno

37WHERE [umo.kind DELTA KIND.OBJECT ADDED To TARGET

35 OR wro.kind = DELTAL KIND.OBEJECT DELETED FROM SOURCE
39 OR uwo.kind = DELTAL KIND.OTHER OEJECT IN TARGET)

40  AND umo.action = MERGE ACTICH.CREATE OBJECT

41 AND £t = uwo.ref

42 MAKE jt.eClassi) mt

43 LINKETING UnmatchedObijectsTToMT WITH £ = £, mwt = mt

44

Figure 4.7: Rule used to copy the unmatched objects from the original target
model into the merged model.

The rule in Figure 4.8 copies the object’s attribute values. There can’t be any



CHAPTER 4. MODEL MERGING 53

change associated with these since the objects only exist in the original target
model. Changes in attribute values are only reported in matched objects, when
the values in the pair differ. The unmatched objects in the original target model
are selected in line 58 from the linking objects created previously and assigned
to t. The corresponding objects created in the merged model are assigned to
mt. Lines 59 to 61 select all their attributes and line 62 copies their values in ¢
to mt.

ST7RULE copyUrmatcheddhijectictributesTit, mwt, o, al

SSWHERE UnmatchedChjectsTTolMT LINES £ = £, mbt = mt

59 AND t.eClassi() = o

60 AND c.eldllAttributes = a

61 AND a.changeahle = true

62 S3ET mt.5a = t.da
63 A

Figure 4.8: Rule used to set the attribute values of the objects created in the
merged model from the unmatched objects in the original target model.

The references are copied in a similar way in the rule shown in Figure 4.9.
References in an unmatched object may point to a matched object or to an
unmatched object in the same target model. Lines 78 and 79 deal with these two
cases. If an unmatched object is not copied to the merge model and is referred
to by another unmatched object that does get copied then the reference will not
be added because the referred object will not exist in the merged model.

73 ROLE copyUrmatcheddhijectReferencesTit, mwt, rt, rnt, rmt, o, £)
T4 WHERE UnmatchedChjectsTTolMT LINES £ = £, mbt = mt

75 AND t.eClassi() = ©

76  AD c.elllReferences = ¢

77 MID r.changeabhle = true

78  MND rt = t.ir

79  AMND [(MatchingChjects LINES £ = rt, nt = rnt, mt = rmt

g0 OF TmatchedChjectsTTolMT LINKES £ = £t, mb = rmt)
S813ET mwt.5r = rmt
52 :

Figure 4.9: Rule used to set the references of the objects created in the merged
model from the unmatched objects in the original target model.

The rules in Figures 4.10, 4.11, 4.12 deal with the unmatched objects in the
new target model, in the same way that the previous rules did with the objects
in the original target model.



CHAPTER 4. MODEL MERGING 54

45 RULE copyUrmatcheddhijectsNTint, act, kind)

47 FORALL Unmatchedobhjectidelta wno

453 WHERE (uwmwo.kind = DELTA KIND.COBEJECT DELETED FROM TARGET
49 OR wro.kind = DELTA KIND.OBEJECT ADDED To SOURCE

50 OR wwo.kind = DELTAL KIND.OTHER OBJECT IN MEW TARGET)
51 AND umo.action = MERGE ACTICH.CREATE OBJECT

52 AND nt = uwo.ref

G3 MAKE EXACT $nt.eClass() mt

S4LTINETNG UnmatchedObhijectsNTToMT WITH nt = nt, mwt = mt

55

Figure 4.10: Rule used to copy the unmatched objects from the new target
model into the merged model.

65 RULE copylUnmatchedthijectlittributesNT (o, mwt, o, a)
26 WHERE UnmatchedChjectsNTToMT LINKS nt = nt, mbt = mt
67 AND nt.eClass() = c

65 AND c.eldllittributes = a

69  AND a.changeahle = true

TOSET wt.%a = nt.5a

71 A

Figure 4.11: Rule used to set the attribute values of the objects created in the
merged model from the unmatched objects in the new target model.

54 RULE copyUmratchedChjectReferencesNT(nt, mwt, r£t, rnt, rmwt, o, r)
S5 WHERE UnmwatchedChjectsNTToMT LINKS nt = nt, mt = mt

g6  AND nt.eClass() = c

87 AND c.elllReferences = r

88 AND r.changeable = true

g3 MND rnt = nt.ir

90  AND [(MatchingChjects LINKEZ £ = rt, nt = rnt, mt = rmt

91 OF UrmratcheddbhijectsNTToMT LIMES nt = rnt, mwt = rmt)
9Z 3ET mt.dr = rmt
93 :

Figure 4.12: Rule used to set the references of the objects created in the merged
model from the unmatched objects in the new target model.

4.1.3 Attribute Changes

The rule in Figure 4.13 is used to set the matched object’s attributes that have
changed and must keep the value in the original target model. Line 105 selects
all the AttributeDelta instances in the delta model. Lines 106 and 107 assign
the pair of matching objects referred to by the changes to the t and nt variables.
The entries for each pair of objects are assigned to the ent variable in line 108.
Line 109 assigns each entry’s attribute to the a variable. Line 110 filters the
objects to include only the ones that must keep the value in the original target
model. Line 111 finds the object in the merged model that was created from



CHAPTER 4. MODEL MERGING 55

the pair of matching objects and assigns it to the mt variable. Line 112 sets
mt’s attribute value to the corresponding object’s attribute value in the original

target model.

104 RULE copyKeeplAttributesT(L, nt, ent, a, act, mwt)
105 FORALL Attrilhuteleltafdelta att

106 WHERE att.t = ¢

107  AND att.nt = nt

108 AND att.entries = ent

1058 AND ent.attribute = 3

110 AND ent.action = MERGE ACTICN.KEEP T VALUE
111 AND MatchingChiects LINES £ = £, nt
112 3ET nt.da = t.fa

113 &

nt, mt = me

Figure 4.13: Rule used to set the matched object’s attributes that have changed
and must keep the value in the original target model.

The rule in Figure 4.14 is used to set the matched object’s attributes that
have changed and must keep the value in the new target model. It works in the

same way as the previous rule.

115 RULE copyKeeplAttributesNT(L, nt, ent, a, act, mt)
116 FORALL Attribhuteleltafdelta att

117 WHERE att.t = ¢

115 ALND att.nt = nt

112 AND att.entries = ent

120 AND ent.attribute = a

121 AND ent.action = MERGE ACTICN.KEEP NT VALUE

122 AND MatchingChijects LINES ¢ = £, nt = nt, wt = mt
123 3ET nwt.d%a = nt.ja

124 ;

Figure 4.14: Rule used to set the matched object’s attributes that have changed
and must keep the value in the new target model.

4.1.4 Reference Changes

Several rules are used to merge the references that have changed according to
the type of reference.

Single-Valued Reference Changes

The rules in Figures 4.15 and 4.16 are used to copy the single-valued references
that have changed and are now pointing to different objects. They work in the
same way as the rules used to merge the changes in the attributes except that
the referred object has to be resolved in the merged model. The same problem

that was found when copying the unmatched object’s references is found here.



CHAPTER 4. MODEL MERGING

56

An inconsistent delta model may indicate that a reference to an object that

wasn’t created in the merged model must be kept.

137 RULE copyKEeepTaingleChangeReferences(t,
138 FORALL SinglePReferencechangebeltaEntryidelta ref
133 WHERE ref.action = MERGE ACTICN.KEEF T VALUE

nt,

e,

r

i

ref.owner.nt,

re,

rnt,

= mrt

140 AND MatchingChjects LINMES £ = ref.owner.t, nt =

141 ALND r = ref.reference

142 AND (MatchingThjects LINEKS t© ref.rt, nt = rnt, mt
143 OFR UrratcheddhijectsTToMT LINES £ = ref.rt, mt = mrt)

144 3ET mt.§r = rmt
145 .

mt = mt

Figure 4.15: Rule used to set the matched object’s single-valued references that

have changed and must keep the value in the original target model.

147 RULE copyKeepNT3ingleChangeReferencesit,

nt,
145 FORALL SingleReferenceChangeleltaEntryidelta ref

e,

143 WHERE ref.action = MERGE ACTICHN.EKEEP NT VALUE

150  AND MatchingChiects LINES t©
151 AND r = ref.reference
152 AND (Matchingthjects LINES t©

154 3ET mt.5r = rmt
155 :

ref.owner.t,

rt, nt
153 OF TmatchedChjectsNTToMT LIMNES nt

nt

r,

ref.owner.nt,

ref.rnt,

ref.rnt,

mt

re,

it

= rmt
rmt)

rnt,

rmt, en)

mL = mt

Figure 4.16: Rule used to set the matched object’s single-valued references that
have changed and must keep the value in the new target model.

The rules in Figures 4.17 and 4.18 are used to copy the single-valued refer-

ences that have changed and are now unset in one of the target models.

157 RULE copyEeepTiinglelUnsetReferences|t,
1583 FORALL SinglePReferencelnsetbeltaEntrylidelta retf

159 WHERE ref.action = MERGE ACTION.KEEP T WVALUE

160 AND ref.inT = true

161 AND MatchingChijects LINES ©
162 M r = ref.reference

163 AND MatchingOhijects LINES o
164 3ET mt.§r = rmt

165 ;

ref.owner.t,

ref.t,

nt,

nt

e,

nt

rnt,

r,

re,

ref.owner.nt,

it

rnt,

rmt

21

mL = mt

Figure 4.17: Rule used to set the matched object’s single-valued references that
were unset in the new target model and must be set to the value in the new

target model.



CHAPTER 4. MODEL MERGING 57

167 RULE copyKeepNT3inglelUnsetReferencesit, nt, mt, r, rt, rnt, rmt, en)
168 FORLLL SingleReferencellnzetDeltaEntryldelta ref

169 WHERE ref.action = MERGE ACTICH.KEEP NT VALUE

170 AND ref.inT = false

171 AND MatchingChjects LINES £ = ref.owner.t, nt = ref.owner.nt, mwt = mt
172 M r = ref.reference

173 AND MatchingUbhjects LINES £ = rt, nt = ref.t, wt = rmt

174 3ET mwt.5r = rmt

I35

Figure 4.18: Rule used to set the matched object’s single-valued references that
were unset in the new target model and must be set to the value in the new
target model.

Multi-Valued Unordered Reference Changes

Two pairs of rules are needed in order to merge these changes. The first pair
copies the multi-valued unordered references in the original target model that
are reported as a change and have an associated action that indicates that they
must be kept in the merged model. The rule in Figure 4.19 deals with the
references that are matched and the one in Figure 4.20 with the ones that are
unmatched. Notice that the first one uses the matching objects to find the
reference that must be set (line 186) while the second one uses the unmatched

objects that have been created in the merge model (line 212).

177 RULE copyEeepTlnorderedMatchedReferences|items, r, £, nht, mt, rt, rnt, rmt)
178 FORALL MultipleReferencebeltaEntrylidelta retf

179 WHERE r = ref.reference

150 AND MatchingChjects LINES £ = ref.owner.t, nt = ref.owner.nt, mwt = mt
181 AND items = ref.itews

152 AND items.eClass|() .name = "3IingleReferenceltem™

1583 AND itews.action = MERGE ACTION.KEEF REFERENCE

184 ALND items.inT = true

185 AND itews.matched = true

156 AND MatchingChjects LINKS £ = items.t, nt = rnt, mbt = rmt

137 3ET mwt.5r = rmt

155

Figure 4.19: Rule used to copy the multiplicity many unordered references in
the original target model that are reported as a change, point to an object that
has a match in the new target model, and must be kept in the merged model.



CHAPTER 4. MODEL MERGING

203 RULE copyKeepTlUnorderedlUnmatchedReferences(items, £, L,

Z04FORALL MultipleReferenceleltaEntry@delta ref
ZO05WHERE £ = ref.reference

nt,

M,

206  AND MatchingObhijects LINES £t = ref.owner.t, nt = ref.owner.nt,

207 ALND items = ref.itemws

208 AND itews.eClassi) . .hame = "IingleReferenceltem™
209 AND items.action = MERGE ACTICH.KEEFP REFEREMNCE
210 ALND items.inT = true

211 ALND items.matched = false

212 AND UnmmatchedthijsectsTToMT LINES £ = items.t, mwt = rmt

Z13 3ET mt.§r = rmt
214 -’

58

rt, rnt,

mwt = mt

Figure 4.20: Rule used to copy the multiplicity many unordered references in
the original target model that are reported as a change, point to an object that
doesn’t have a match in the new target model, and must be kept in the merged

model.

The second pair, shown in Figures 4.21 and 4.22, copies the references in the

new target model.

190 RULE copyEeepNTUnorderedMatchedReferences(items, r, t,
1291 FORALL MultipleReferencelbeltaEntrylidelta ref
192 WHERE r = ref.reference

nt,

e,

193 AND MatchingChjects LINKS £t = ref.owner.t, nt = ref.owner.nt,

194 AND items = ref.itews

195 AND items.eClassi) .name = "3ingleReferenceltem™
196 AND itews.asction = MERGE ACTION.KEEF REFERENCE
197 ALND items.inT = false

1895 AND itewms.matched = true

199  AND MatchingChjects LINEZ £ = r£t, nt = items.t, mwt =

ZOOSET mwt.5r = rmt
201 :

rmt

rt, rnt,

mt = mt

Figure 4.21: Rule used to copy the multiplicity many unordered references in
the new target model that are reported as a change, point to an object that has
a match in the original target model, and must be kept in the merged model.

rmt)

rmt)



CHAPTER 4. MODEL MERGING 59

216 RULE copyKeepMNTUnorderedUnmatchedReferences|(items, r, L, nt, mwkt, r£t, rnt, rmt)
Z17FORLLL MultipleReferenceleltaEntry@delta ref

215 WHERE r = ref.reference

219 AND MatchingOhijects LINES £ = ref.owner.t, nt = ref.owner.nt, mwt = mt
220 ALND items = ref.items

221 AND ditews.eClassi) .nhame = "IingleReferenceltem™

222 AND items.action = MERGE ACTICH.KEEP REFERENCE

223 AD itews.inT = false

224 LND items.matched = false

225 AND UnmatchedCbhijectsNTToMT LINES £ = itews.t, mt = rmt

ZZ63ET mt.§r = rmt

227 2

Figure 4.22: Rule used to copy the multiplicity many unordered references in
the new target model that are reported as a change, point to an object that
doesn’t have a match in the original target model, and must be kept in the
merged model.

Multi-Valued Ordered Reference Changes

Merging the ordered references is a three step process. First, the references that
each pair of objects have in common must be copied into the merged model,
even if there is a change reported in their order. Then, according to the changes
in their order, they must be reorganized so they reflect the order selected by
the user. Finally, the references that were added in either target model must
be copied into the merged model in the correct relative position. Note however
that a reference that was added to the set of references in the original target
model may have the same relative position as a reference that was added to the
set of references in the new target model. In this case there is no way to know
which one must go first, since their relative position is given with respect to the
same reference in the set. By default the references that come from the original
delta model will be copied first and therefore will appear first in the collection
of references.

The rule in Figure 4.23 copies the multi-valued ordered references that each
pair of objects have in common. The pattern in Figure 4.24 is used to filter
the references that appear only in the original target model, since they will be
copied by another rule and only if their associated action indicates that they

must be kept.



CHAPTER 4. MODEL MERGING 60

2Z3BRULE copylrderedReferences(t, nt, wt, r, rt, rnt, rmt)
Z39WHERE Matchinglhjects LINES £ = £, nt = nt, mt = mwt

240 AND t.eClassi) = ¢

241 ALND c.elllReferences = ¢
242 AD r.many = true

243 AND r.ordered = true

244 AND r.changeable = trus

245 AND rt = t.8r

246 AND MNOT isSingleOrderedBRefir, £, rt)

247  AND MatchingChjects LINES £ = r£t, nt = rnt, wt = rmt
Z453ET mwt.5r = rmt

249

Figure 4.23: Rule used to copy the multiplicity many ordered references that
the pairs of matching objects have in common.

ZZ9PATTERN is3ingleCrderedRefT(R, T, RT)
ZIOFORALL SingleReferenceOrderedItemidelta item
Z31WHERE item.inT = true

232 MDD item.t = RT

233 AND entry = item.owner

234 AND entry.references = R

235 AND entry.owner = T

Z3ie  ;

Figure 4.24: Pattern used to determine if a reference that is part of a multiplicity
many ordered reference in the original target model doesn’t have a corresponding
reference in the new target model.

The rule in Figure 4.25 is used to sort the multi-valued ordered references
that must keep the relative order in the new target model. Since the references
are copied from the original target model then their relative order is the same as
the one in the original target model. Therefore, only the changes that indicate
that the order in the new target model must be kept have to be considered.

251 RULE sortEeepMTOrder (itewms, ¥, rt, rtilfter, rnt, rntlifter, rmwt, rmtlifter)
252 FORALL MultipleCrderedPBeferencebeltaEntryfidelta ref

Z53 WHERE r = ref.reference

254 AND MatchingChjects LINES £ = ref.owner.t, nt = ref.owner.nt, mwt = mt
255 LND items = ref.itews

256 AND itewms.eClassi) .name = "OrderedReferencePalrItem™

257 AND itews.action = MERGE ACTICN.KEEP NT ORDER

258 LND rnt = items.rnt

2553 LND rntlifter = jtews.rntlifter

260 AND MatchingChjects LIMEZ £ = r£t, nt = rnt, wt = rmt

261 AND MatchingObijects LINES £ = rtlfter, nt = rntlifter, wt = rmtifter
Z6Z 3ET rmt BEFORE rmtiAfter IN mt.dr{}

263 i

Figure 4.25: Rule used to sort the multiplicity many ordered references that
must keep the relative order in the new target model.



CHAPTER 4. MODEL MERGING 61

The last step in the process is accomplished by two pairs of rules. The
first pair copies the references that point to matched objects that were added
in either model. The rule in Figure 4.26 copies the ones added in the original
target model and the one in Figure 4.27 copies the ones added in the new target
model.

265 RULE copyEeepTOrderedMatchedReferences (itewms, r, t, nt, ntifter, mt, rt,
266 rmt, rmbifter)

Z67FORALL MultipleOrderedReferenceleltaEntryfidelta ref

Z68WHERE r = ref.reference

269  AND MatchingOhijects LINES ¢ = ref.owner.t, nt = ref.owner.nt, mwt = mt
270  ALND items = ref.itews

271  AND ditews.eClassi) .nhame = "IingleOrderedReferenceltem™

272 AND items.action = MERGE ACTICH.KEEP REFERENCE

£33 AND itews.inT = true

274 LND itemsz.matched = true

275  AND MatchingObijects LINKES £ = items.t, nt = rnt, mt = rmt

276  AND MatchingChjects LINES £ = items.tlAfter, nt = ntifter, wt = rmblifter

Z7753ET mt.§r = rwt,
278 rmt BEFORE rmtiAfter IN mt.dr
279

Figure 4.26: Rule used to copy the multiplicity many ordered references in the
original target model that are reported as a change, point to an object that has
a match in the new target model, and must be kept in the merged model.

281 RULE copyKeepMTOrderedMatchedReferences|(items, r, L, tifter, nt, mt, rt,
282 rmt, rmtlifter)

283 FORALL MultipleCrderedBeferencebeltaEntryidelta ref

284 WHERE r = ref.reference

285 AND MatchingChjects LINES £ = ref.owner.t, nt = ref.owner.nt, mwt = mt
286 LND items = ref.itews

287 AND items.eClassi) .name = "3inglefrderedReferenceltem™

288 IMND items.action = MERGE ACTION.KEEP REFERENCE

2859 LND items.inT = false

290  ALND itemz.matched = true

291  AND MatchingObhiects LINES ¢ rt, nt = items.t, mwt = rmt

292 AND MatchingChjects LINKS t© = tAfter, nt = items.tlAfter, mbt = rmtlifter
Z93 3ET mt.§r = rmwt,

294 rmt BEFORE rmtifter IN mt.dr

295

Figure 4.27: Rule used to copy the multiplicity many ordered references in the
new target model that are reported as a change, point to an object that has a
match in the original target model, and must be kept in the merged model.

The second pair copies the references that point to unmatched objects that
were added in either model. The rule in Figure 4.28 copies the ones added in
the original target model and the one in Figure 4.29 copies the ones added in
the new target model.

rnt,

rnt,



CHAPTER 4. MODEL MERGING 62

297 RULE copyKeepTOrderedUmmatchedReferencesiitems, r, L, nt, ntifter, mt, rt,
298 rmt, rmtlifter)

Z99FORALL MultipleCrderedPBeferencebeltaEntryidelta ref

SJOO0WHERE r = ref.reference

301  AND MatchingChjects LINES £ = ref.owner.t, nt = ref.owner.nt, wt = mt
302 AD itewms = ref.items

303 AND itemz.eClassi() .name = "IingleOrderedReferenceltem™

304 AND itews.action = MERGE ACTION.KEEF REFERENCE

305 ALND items.inT = true

306 LND items.matched = false

307  AND UmmatchedChjectsTToMT LINKES £t = items.t, mb = rmt

308 AND MatchingObhijects LINMES £ = itews.tAfter, nt = ntlifter, wt = rmtifter
3093ET mt.$r = rmt,

310 rwt BEFORE rmtifter IN mt.S5r

311 ;

Figure 4.28: Rule used to copy the multiplicity many ordered references in the
original target model that are reported as a change, point to an object that
doesn’t have a match in the new target model, and must be kept in the merged
model.

313 RULE copyKeepNTOrderedlUmnatchedReferencesi(items, r, t, tAfter, nt, mt, rt,
314 rmt, rmtlifter)

315 FORALL MultipleCrderedBeferencebeltaEntryidelta ref

316 WHERE r = ref.reference

317 AND MatchingChjects LINES £ = ref.owner.t, nt = ref.owner.nt, mwt = mt
315 LND items = ref.itews

319 AND items.eClassi) .name = "3inglelrderedReferenceltem™

320 AND itews.action = MERGE ACTION.KEEF REFERENCE

321 ALND items.inT = false

322 AND itews.watched = false

323 AND UnmatchedChjectsNTToNT LINKES £ = items.t, wt = rmt

324  AND MatchingOhijects LINES £ = tifter, nt = items.tlifter, wt = rmtlifter
3Z253ET mt.§r = rmt,

326 rwt BEFORE rmtlifrer IN mt.S5r

327 »

Figure 4.29: Rule used to copy the multiplicity many ordered references in the
new target model that are reported as a change, point to an object that doesn’t
have a match in the original target model, and must be kept in the merged
model.

rnt,

rnt,



Chapter 5

Conclusion

5.1 Summary of Work

The goal of this thesis was to investigate a model merging approach to the
problem of change propagation in the context of model to model transformations
and to provide a solution for the DSTC’s transformation engine, Tefkat. The
first part of the project involved researching model transformation concepts,
looking into the design of Tefkat’s QVT language, and studying the relevant
implementation details. Then, merging techniques used in other domains were
investigated and this survey was used to classify the type of merge needed in
this particular case. The key steps in the process of merging models were also
identified.

Based on the information gathered during the research phase a strategy to
merge the models was created. This strategy deals with state-based merging in
which only the two models being merged are available. Different alternatives for
implementing the strategy were analyzed and a model transformation approach
was chosen, in order to take advantage of all the features provided by the QVT
language. Also, a strategy to gather the user input needed to guide the merge
process based on simple rules was implemented.

The whole process involves three major steps: finding the delta between the
models, gathering input from the user to guide the merge process, and merging
the models. In order to represent the delta between the models a specific meta-
model was designed. The implementation was packaged as an Eclipse plugin
that exposes an API that Tefkat can use to provide the merging functionality.

The thesis has fulfilled its goal of investigating and implementing a strategy
to merge EMF based models. A working prototype has also been developed.

63



CHAPTER 5. CONCLUSION 64
5.2 Future Work

5.2.1 Collecting User Input

The actions that need to be taken for every change in the delta model are
currently set through a set of simple rules that assign a default action for each
type of change. Other ways of collecting user input are obviously necessary.
This process can be handled in several ways. First, a user interface that displays
the changes can be used to gather user input interactively. The changes can be
display generically for every meta-model. However, the way in which the changes
are displayed can be improved if user interfaces specific to certain meta-models
are provided. For example, in the MDA context it would certainly make sense
to provide a specific user interface to handle the merging of UML2 models.

The rules used to set the actions could also be improved. A language could
be designed in order to allow complex rules based on arbitrary conditions in
the models. For example, in certain cases having a rule that says “keep the
objects created in the target model that don’t have references to other objects”
might be better than having the user set a lot of actions manually, especially
if the models being merged are big and don’t have a meta-model specific user
interface.

Finally, it would also be useful to keep track of the choices a user has made
in previous transformations. If a source model is modified several times and the
transformation is also re-run several times in order to propagate the changes,
it is likely that the objects added manually to the target model, for example,
appear recurrently as changes. In this case it would be useful to remember the
previous choice the user has made since it will most likely be the choice he will

take when the transformation is re-run.

5.2.2 Delta Model Consistency

The delta model contains the information about the changes between the target
models being merged and is also used to collect information from the user about
the actions that must be taken regarding each change. However, if this model is
not checked once the information from the user is collected it may end up in an
inconsistent state. For example, suppose an object is added to the original target
model and one of the references from one of the existing objects is set to point
to the new object. In this case two changes will be reported in the delta model:
one indicating that an object has been added to the original target model and
another one indicating that a reference from one of the objects in the original
target model has changed. If the user decides not to keep the new object but
also decides to keep the change in the reference then the delta model will be



CHAPTER 5. CONCLUSION 65

left in an inconsistent state because the object that the reference is supposed to
point at doesn’t exist in the merged model.

This is why a consistency check must be added before the merge process.
This can be done programmatically or through a model transformation, since
it basically involves querying the delta model. Exactly how to perform the
validation of the delta model depends on how the user input is being collected.
If a user interface is being used to receive information interactively then the
model must be checked every time the user makes a selection that may have an
impact on the consistency of the rest of the model. If a rule based approach is

used then the model must be checked after the application of the rules.

5.2.3 TUnidentified Matching Objects

In certain cases it may be impossible to identify a pair of matching objects
just by analyzing the trace objects. These are described in section 2.2.1. Even
though the trace analysis cannot determine these matches exactly, it can be
used as part of a process that tries to identify possible matching objects based
on other information, like having some common objects in the source model
pointed at by their trace objects and having some attributes set to the same
value. Information from the user could also be requested when a possible match
is suspected.

Also, if extra information is available for specific meta-models and transfor-
mations, it could be used to match these objects. For example, in the example
given in section 2.2.1, the impossibility of identifying the objects as matching
occurs because an attribute is moved from one class to another. If this specific

information is available, then it can be used to aid the matching process.

5.2.4 Change Propagation In Both Ways

This thesis deals with the change propagation problem in only one direction.
It could be useful to investigate the possibility of dealing with an analogous
synchronization process that propagates changes the other way around. This
process could automatically update the source model with the relevant changes
introduced in the target model. This feature is not so important in tools that
deal with model to text transformations, but it is relevant in the context of
model to model transformations, since it is common to introduce changes in the

target model that need to be updated in the source model.



CHAPTER 5. CONCLUSION 66

5.3 Research Contribution

This thesis has derived an algorithm for calculating the delta between two mod-
els in the context of a model transformation engine. The algorithm is meta-
model independent and relies on the trace objects created by the engine to
determine which objects in the models being merged are equivalent, without
having to depend on the existence of unique object identifiers. Even though
the algorithm has been implemented as a model transformation specifically for
Tefkat’s trace model, it could be used by other transformation engines that
are state based and that generate trace objects. Limitations of the algorithm
for certain scenarios have also been identified, and possible solutions have been
proposed as future research.

A meta-model capable of storing the delta has also been developed, according
to the different types of changes that may occur between the models. This
meta-model allows changes in the models being merged to be recorded and is
also independent from the algorithms derived here.

Finally, an algorithm to merge the models based on the information gath-
ered in the delta model and the input from the user has also been derived and

implemented as a model transformation.



Bibliography

1]
2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

W. Blast A. Kleppe, J. Warmer. MDA Explained. Addison Wesley, 2003.

M. Allanen and I. Porres. Difference and union of models. In Proceedings
of the «UMLs 2003 Conference, October 2003.

Eclipse.org. Uml2 emf-based uml 2.0 metamodel implementation, May
2005. URL http://www.eclipse.org/uml2/.

E. Merks-R. Eliersick T.J. Grose F. Budinsky, D. Steinberg. The Eclipse
Modeling Framework. Addison Wesley, 2003.

D.S. Frankel. Model Driven Architecture: Applying MDA to Enterprise
Computing. John Wiley & Sons, Inc., New York, NY, USA, 2002. ISBN
0471319201.

W. Premerlani F.Eddy-W. Lorensen J. Rumbaugh, M.Blaha. Object-
Oriented Modeling and Design. Prentice Hall, 1991.

M.J. Lawley-K. Raymond J. Steel K. Duddy, A. Gerber. Model transfor-
mation: A declarative, resusable patterns approach. In Proceedings 7th
IEEE International Enterprise Distributed Object Computing Conference
(EDOC 2003), pages 174-185, 2003.

M. Lawley. Tefkat: The emf transformation engine, May 2005. URL http:
//www.dstc.edu.au/tefkat/.

T. Mens. A state-of-the-art survey on software merging. IEEE Transactions
on Software Engineering, 28:449-462, May 2002.

D.S. Johnson M.R. Garey. Computers and Intractability: A Guide to the
Theory of NPCompleteness. Freeman, 1979.

Object ManagementGroup (OMG). Human-usable textual notation. URL
http://www.ong.org/docs/ad/02-03-02.pdf.

67



BIBLIOGRAPHY 68

[12] Object ManagementGroup (OMG). Meta object facility (mof) 2.0
xmi mapping specification, 2003. URL http://www.omg.org/docs/ptc/
03-11-04.pdf.

[13] Object ManagementGroup (OMG). Omg/rfp/qvt mof 2.0
query/views/transformations rfp, 2003. URL http://www.omg.org/
docs/ad/02-04-10.pdf.

[14] R. Popma. Jet tutorial part 1 (introduction to jet), May 2004. URL
http://downlaod.eclipse.org/tools/emf/scripts/docs.php.

. . , .
[15] R. Popma. Jet tutorial part 2 (write code that writes code), May 2004
URL http://downlaod.eclipse.org/tools/emf/scripts/docs.php.

[16] H. Garcia-Molina J. Widom S. Chawathe, A. Rajarama. Change detection
in hierarchically structured information. In Proceedings of the ACM SIG-
MOND International Conference on Management of Data, pages 493-504,
1996.

[17] S. Sendall S. Demathieu, C. Griffin. Model transformation with the ibm
model transformation framework, May 2005. URL http://www-128.ibm.
com/developerworks/rational/library/05/503_sebas/.

[18] D. J. DeWitt Y. Wang and J. Cai. X-diff: A fast change detection algorithm
for xml documents. In ICDE, 2003.



Appendix A

UML To Relational

Transformation

This appendix shows a simple transformation between the UML2 meta-model
from the Eclipse.org UML2 project [3] and a simple relational database model,
using Tefkat’s QVT language. Since there is no standard meta-model for de-
scribing a relational database design, a simple ecore model taken from IBM’s
model transformation tutorial [17] was chosen. Figure A.1 shows a diagram of

this meta-model.

Schema
name - Sitring

+@ble= |0~

=ename - Stnng

Codumn

Cinstaid Iﬂ- consiraint {éedin %r.am’:: Sinng

- 1~ Sptype | Sting

= = |Spnulishic : tookan
+pirnary
i

D“""'a'?K‘?'Y Forsigriey
prame : String =prame : String

Figure A.1: Simple relational meta-model. Source: [17].

There are several ways to map an OO model into a relational database

model[6]. The following rules were used in this transformation.

69



APPENDIX A. UML TO RELATIONAL TRANSFORMATION 70

e FEach package maps to a schema.

e Each class maps to a table.

The superclass and each subclass map to a table.
e Each one-to-one association maps to a distinct table.
e Each one-to-many association maps to a distinct table.

e Each many-to-many association maps to a distinct table.

The transformation only considers binary associations and single inheritance.
The following sections explain the rules used in the transformation.

A.1 Packages to Schemas

The rule in Figure A.2 is used to create a schema for every package in the UML

model. The name of the schema is set to the name of the package.

SEULE Packagelichemals)
SFORALL Package p
10MAEE Schewma =

113ET s.name = p.hname
12

Figure A.2: Rule used to create a schema for every package.

A.2 Classes to Tables

For each class in the UML model a table is created. If the class inherits from
some other class then tables are created for both the class and the superclass.
These classes are related by the base class’ primary key. The rule in Figure A.3
creates a table for each base class. The rule in Figure A.5 creates a table for
each subclass and uses the pattern in Figure A.4 to find its topmost superclass
and create the primary key based on it. Notice that the rules extend the Pack-
age2Schema rule in order to add the generated table to its corresponding schema.
Also, the related classes and tables are linked with instances of Class2Table.



APPENDIX A. UML TO RELATIONAL TRANSFORMATION

14 RULE BaseClassa2Table(s, sc) EXTENDS Packagezichema(s)

15 FORALALL Class o
16 WHERE NOT sc = o.superilass

17HMAEE Table £, Colwon col, PrimaryKey pk

1553ET t.name = C.hame,

19 col.name = appendic.name, "-ID™),
20 col.type = "IDM,

21 col.nullable = false,

22 pk.nawxe = append(c.name, "-PE')
23 t.columns = col,

24 t.primary = pk,

25 col.constraint = pk,

26 s=s.tables = ¢
Z7LINKEING ClassZTable WITH class = o,
28 o

Figure A.3: Rule used to create a table for every base class.

JOPATTERN findEaseClass(C, EC)
31WHERE EBEC = C.supercClass

32 AND (NMOT sc = BC.superClass OR findBaseClass (BC,

33 4

Figure A.4: Pattern used to find the topmost superclass of a given class.

35RULE SubiClassiTabhle (s, sc, st) EXTENDS Packagelichemals)

36FORALL Class o

37WHERE =c = c.superclass

38 AND findEaseClass|c, sc)

39 AND Class2Table LINES class = s&;

41 5ET t.nawme = . hate,

42 col.name = St.primary.name,

43 col.type = "ID",

44 col.nullable = false,

45 pk.nawe = append(c.nsme, "-PE")
46 fk.namwe = append(st.primary.name,
47 fk.refTable = st,

45 t.coluwmns = col,

49  t.primary = pk,

50 t.constraints = £k,

51 col.constraint = pk,

=1 col.constraint = fk,

53 s.tables = ¢
S4LINKING ClassiTable WITH class = o
55 4

takle

tahle
40HMAKE Table t, Column col, PrimaryKey pk, ForeignKey fk

tahle

"_FE"),

71

Figure A.5: Rule used to create a table for every class that inherits from another.



APPENDIX A. UML TO RELATIONAL TRANSFORMATION 72

A.3 Attributes to Columns

The rule in Figure A.6 creates a column for every attribute and inserts it in the
corresponding table. The linking objects created in the BaseClass2Table and
SubClass2Table rules are used to find the table that owns the attribute.

S7RULE AttributezColumnic, t)

S8FORALL Property prop

SOWHERE o = prop.class AND ClassiTable LINES class = o, tshle = ¢

GO0MAKE Columwn col FROM aZcic, prop)

61 3ET zol.nasme = prop.hname,

G2 col.type = prop.type.name,

63 col.nullabhle = true,

64 t.columns = col
65 -

Figure A.6: Rule used to create a column for every attribute.

A.4 Associations to Tables

All the associations are mapped to distinct tables. The rule in Figure A.8 is
used to create a table for each one-to-one association. Foreign keys are created
to relate the tables. The pattern in Figure A.7 is used to determine if an
association end is navigable. This is necessary because the way to access the
class in the association end is different depending on its navigability. The rule
in Figure A.9 is used to create a table for each one-to-many association and the
one in Figure A.10 to create a table for each many-to-many association. These
rules work in a similar way since they all create a distinct table to represent the
association.
67PATTERN isNavigable (i, END)

65 WHERE NOT A.ownedElement = END
=] ;

Figure A.7: Pattern used to determine if an association end is navigable.



APPENDIX A. UML TO RELATIONAL TRANSFORMATION

T1RULE OneToOnelAssociationz2Tabl
T2 FORALL Association a

T3 WHERE a.wewberEnd{}.sizel) =
74 AND a.menberEnd{}.get(0)

75  MID a.wewberEnd{}.get(l] =
T&  AND IF isNavigableia, end0)
77 AMD IF isNavigasbhlei(a, endl)
78 AND endOl.upper = 1

79 AMND endl.upper = 1

80 AND Class:Z2Table LINES class =
81 AND ClasszTable LINKS class =
82 MAKE Table t, Column coll, Co
a3 PrimaryKey pk, ForeignKey £
G4 3ET t.nawe = a.hname,

85 coll.nawe = appendiftl. name
g6 coll.type = "IDY,

87 coll.nullahle = false,

88 coll.name = appendiftl.name
89 coll.type = "IDM,

90 coll.nullabhle = false,

91 pk.namwe = appendla.nsme, -
9z t.colunns = cold,

93 t.columns = coll,

94 t.primary = pk,

95 t.constraints = £0,

946 tL.oconstraints = £1,;

97 coll.constraint = pk,

98 coll.constraint = pk,

99 fO.name = append(fcl.primar
100 f0.refTakhle = £t0,

101 fil.namwe = appendiftl.primar
102 fl.refTable = ftl,

103 coll.constraint = £0,

104 coll.constraint = f£1

a5 ;

Figure A.8: Rule used to create

elsc, endd, endl, =0, =1, ftO,
2
= endld

endl

THEN cO = end0.class  ELIE cO

THEN ¢l = endl.class  EL3E cl
cO, tabhle = ftO
cl, tahle = ftl

lumn coll,

0, ForeignKey f£1

i "_ID"J .

I "_ID"J i

PE"] .

v.name, "-FK™),

v.hame, "-FET"),

a table for each one-to-one

73

fri)

endl.type ENDIF
endl.type ENDIF

association.



APPENDIX A. UML TO RELATIONAL TRANSFORMATION

107 RULE OneToManyAssociationZTable (sc,

105 FORALL
109 WHERE
110  AND
111 AND
11z AWD
113  AND
114 AWD
115 AND
116  AWD
117 AND

115 MAKE Table t,

Lz=zociation a
a.mewberEnd{}.sizel)
a.werberEnd!  .get (0]
a.memberEnd{} .get (1)
IF isNavigable(a, =ndl)
IF isMNavigablei(a, endl)
endl.upper 1
endl.upper -1
ClassZTahle LINES
ClassiTable LINES
Column coll,

class

Co

class =

endld, endl, cO, cl,

2
endd
endl
THEN cO = end0.class  ELSE
THEN c©l1 = endl.class  EL3E
= @0, table = ft0O

cl, tabhle = ftl
lumwn coll,

119 PrimaryKey pk, ForeignKey £0, ForeignKey f£1
1203ET t.namse = a.hame,

121 colO.nasme = append (ft0.namwe, "-ID7),

122 cold.cype = "IDT,

123 coll.nullabhle = false,

124 woll.nswe = append(fcl.nswe, "-ID7T),

125 ecoll.type = "ID™,

126 ecoll.nullable = false,

127 pk.name = appendia.name, "-PE"),

128 t.coluwns = cold,

129 t.columns = coll,

130 t.primary = pk,

131 t.constraints = £0,

132 t.oonstraints = £1;

133 coll.constraint = pk,

134 f0.nawe = appendiftl.primary.name, "-FE'),
135 f0.refTakble = £t0,

136  fl.nawe = appendiftl.primary.hame, "-FE™),
137 fl.refTable = ftl,

138 ecol0.constraint = £0,

132 coll.constraint = f£1

140 ;

fro,

o =

(asa B

74

fri)

endl.type ENDIF
endl.type ENDIF

Figure A.9: Rule used to create a table for each one-to-many association.



APPENDIX A. UML TO RELATIONAL TRANSFORMATION

177 RULE ManyToManyvlssociationZTahle (=sc,
178 FORALL Association a

endl, endl, c0O,

179 WHERE a.mwenberEnd{}.size(] = 2

150 AND a.memberEnd{}.get(0) = endd

151 AND a.mwewberEnd{}.geti(l)] = endl

152 AND IF isMNavigablel(a, endld) THEN cO =

153 LMD IF isNavigableia, endl) THEN cl = endl.class  EL3E cl
154 AND endO.upper = -1

185 AND endl.upper = -1

156 AND ClassiTable LINEKS class = o0, table = f£t0O

1587 AND ClassiZTable LINES class = ol, table = ftil

155 HAKE Table £, Column col0, Colunn coll,

159 PrimaryEevy pk, ForeignEey £0, ForeignKey f£1
190 3ET t.name = a.hname,

191 e2oll0.nsgee = append (£o0. nsge, "-ID7) .

192 colld.type = "ID",

193 colld.mallahle = false,

194 ecoll.name = append(ftl.nawe, "-ID"),

195 coll.type = "IDT,

196 coll.nullable = false,

197  pk.nawe = appendia.nams, "-PE"),

195 t.columns = colO,

199 t.columwmns = coll,

200 t.primary = pk,

201 t.constraints = f£0,

202 t.constraints = £1,

203 coll.constraint = pk,

204 coll.constraint = pk,

205 f0.namwe = appendiftl.primary. hame, "-FET"),
206 fO0.refTable = £t0,

207 fl.name = appendiftl.primary.name, "-FE™) .,
208 fl.refTable = ftl,

209 eoll.constraint = £0,

210 coll.constraint = f£1

i L

o

fro,

endl.class  EL3E cO =

75

fri)

endl.type ENDIF
endl.type ENDIF

Figure A.10: Rule used to create a table for each many-to-many association.



