
Tefkat

Jim Steel

The plan

 Introduction/background
Language Features
Mandatory Example
 Implementation highlights
Status

Introduction/background

5 years of model transformations
GenGen, based on CWM, java black-boxes
MofLog, syntactic extension to F-Logic
QVT submission (DSTC/IBM/CBOP)
The Engine Formerly Known As Tarzan

Model Transformation has specific issues
Recurring patterns and practices
Not a general programming problem

Language Overview (1)

 “Declarative” (in the parlance of our times)
Source and target constraints upon:

Existence of object instances in an extent
Type of objects
Value/s of object features
Relative order of values in an object’s feature
Relationship between values (traceability)

Language Overview (2)

Notable:
No traversal order, no execution order
Constructive
Not designed for in-place updates
Change propagation can be treated using

model-merge (Metke ‘05)
Separation of abstract & concrete syntax

Language Overview (3)

3 types of Extent
Source (match)
Target (constrain)
Tracking (match & constrain)

Rules
A pair of constraints to match and

constrain/enforce
No explicit invocation

Transformation

Transformation
Name, parameters, imports

TRANSFORMATION c_to_r: cls -> rel

IMPORT http:///mtip05/class.ecore

IMPORT http:///mtip05/rdbms.ecore

Class Definitions

For tracking relationships between source
and target extents

Defined inline or imported (e.g. for larger
scale trace models)

Rules

 Action elements of the transformation
 2 constraints - match & constrain - that share

variables

RULE ClassAndTable(C, T)

 FORALL Class C {

 is_persistent: true;

 name: N; }

 MAKE Table T { name: N; }

 LINKING ClsToTbl WITH class = C, table = T;

Rules (2)

 We can also use rules to enforce
preconditions/well-formedness rules, with a
target constraint FALSE

RULE constraint_reflexive_non_persistent

 FORALL Class C

 WHERE C.is_persistent = false

 AND ClassHasReference(C, C, _)

 AND println("Found a non-persistent class in
relation (by association or attribute) with
itself: ", C)

 SET FALSE;

Patterns & Templates

 Named, parameterised, reusable constraints
Patterns for source, templates for target
Allows for recursion

PATTERN ClassHasSimpleAttr(Class, Attr, Name, IsKey)

 FORALL Class Class {

 attrs: Attribute Attr {
 type: PrimitiveDataType _PT;

 name: Name;

 is_primary: IsKey;

 };

 };

Trackings

Track mapping relationships between
source and target elements

Allows for loose coupling of rules
Allows for decoupling of rules that need a

relationship from the rules that
establishes it

FROM

 Injections to control the number of objects
created

Creates one unique object for each
unique tuple given by the FROM

 If absent, there is an implicit injection:
Named for the rule and target variable
Parameters are the source variables

Decoupling -> Maintainability, Reusability

The Example: Summary

Tracking classes:
ClsToTbl
AttrToCol

Constraint rules:
Only root classes may be persistent
No reflexive relations for non-persistent classes

The Example: Patterns

Abstractions for related classes, attributes
Find the root class
Does a class “have” an attribute

Simple attributes
Included attributes
Attributes via subclasses

The example: Rules

Create tables and trace from the class
Create column, set pkey and trace from

the attribute
Make and link foreign keys

About 100 lines of code

Notes: Spanning meta-levels

Cases are few but very useful/important
Reflection

Normal MOF reflection
Embedded expressions

Prefix $ allows the use of expressions where a literal
is expected (variables, type names)

Any Type: _
Paper contains generic copy in 27 lines

Notes: Syntax

Separate concrete & abstract syntax
SQL-inspired concrete syntax

Object Literals
Syntactic sugar to replace constraints with

object fragments
Variable naming

_ for “Don’t Care” variables
Warnings for variable usage

Notes: The Engine

Standalone option
Eclipse-based

Syntax-highlighting editor with linked feedback
for errors & warnings, outline view

Source-level debugger
Build system

Transformation applications
URI mappings

Pragmatics: printlin, continue despite failure,
java invocation (dangerous)

Notes: Stratification

Rules must be stratified
I.e. a rule cannot depend on its own negation
E.g. cannot check for existence of a target

object and then create it
Hence no-check on target models. Tracking

hopefully allows a happy medium
Investigate streaming (serial transformations)

as a solution

Evaluation

Large-scale evaluation
Generation of test frameworks from UML

diagrams (Dai ‘04)
Model-merge for change propagation (Metke

‘05)
Health Record translation and Xform generation

Very large, many models, many subtleties

Open-source under investigation

Conclusion

The goal is to allow the user to focus on
what the transformation does, not how it

does it.

For more…

http://www.dstc.edu.au/Research/Projects/
Pegamento/tefkat/

Or just google for ‘tefkat’

