
Tefkat

Jim Steel

The plan

 Introduction/background
Language Features
Mandatory Example
 Implementation highlights
Status

Introduction/background

5 years of model transformations
GenGen, based on CWM, java black-boxes
MofLog, syntactic extension to F-Logic
QVT submission (DSTC/IBM/CBOP)
The Engine Formerly Known As Tarzan

Model Transformation has specific issues
Recurring patterns and practices
Not a general programming problem

Language Overview (1)

 “Declarative” (in the parlance of our times)
Source and target constraints upon:

Existence of object instances in an extent
Type of objects
Value/s of object features
Relative order of values in an object’s feature
Relationship between values (traceability)

Language Overview (2)

Notable:
No traversal order, no execution order
Constructive
Not designed for in-place updates
Change propagation can be treated using

model-merge (Metke ‘05)
Separation of abstract & concrete syntax

Language Overview (3)

3 types of Extent
Source (match)
Target (constrain)
Tracking (match & constrain)

Rules
A pair of constraints to match and

constrain/enforce
No explicit invocation

Transformation

Transformation
Name, parameters, imports

TRANSFORMATION c_to_r: cls -> rel

IMPORT http:///mtip05/class.ecore

IMPORT http:///mtip05/rdbms.ecore

Class Definitions

For tracking relationships between source
and target extents

Defined inline or imported (e.g. for larger
scale trace models)

Rules

 Action elements of the transformation
 2 constraints - match & constrain - that share

variables

RULE ClassAndTable(C, T)

 FORALL Class C {

 is_persistent: true;

 name: N; }

 MAKE Table T { name: N; }

 LINKING ClsToTbl WITH class = C, table = T;

Rules (2)

 We can also use rules to enforce
preconditions/well-formedness rules, with a
target constraint FALSE

RULE constraint_reflexive_non_persistent

 FORALL Class C

 WHERE C.is_persistent = false

 AND ClassHasReference(C, C, _)

 AND println("Found a non-persistent class in
relation (by association or attribute) with
itself: ", C)

 SET FALSE;

Patterns & Templates

 Named, parameterised, reusable constraints
Patterns for source, templates for target
Allows for recursion

PATTERN ClassHasSimpleAttr(Class, Attr, Name, IsKey)

 FORALL Class Class {

 attrs: Attribute Attr {
 type: PrimitiveDataType _PT;

 name: Name;

 is_primary: IsKey;

 };

 };

Trackings

Track mapping relationships between
source and target elements

Allows for loose coupling of rules
Allows for decoupling of rules that need a

relationship from the rules that
establishes it

FROM

 Injections to control the number of objects
created

Creates one unique object for each
unique tuple given by the FROM

 If absent, there is an implicit injection:
Named for the rule and target variable
Parameters are the source variables

Decoupling -> Maintainability, Reusability

The Example: Summary

Tracking classes:
ClsToTbl
AttrToCol

Constraint rules:
Only root classes may be persistent
No reflexive relations for non-persistent classes

The Example: Patterns

Abstractions for related classes, attributes
Find the root class
Does a class “have” an attribute

Simple attributes
Included attributes
Attributes via subclasses

The example: Rules

Create tables and trace from the class
Create column, set pkey and trace from

the attribute
Make and link foreign keys

About 100 lines of code

Notes: Spanning meta-levels

Cases are few but very useful/important
Reflection

Normal MOF reflection
Embedded expressions

Prefix $ allows the use of expressions where a literal
is expected (variables, type names)

Any Type: _
Paper contains generic copy in 27 lines

Notes: Syntax

Separate concrete & abstract syntax
SQL-inspired concrete syntax

Object Literals
Syntactic sugar to replace constraints with

object fragments
Variable naming

_ for “Don’t Care” variables
Warnings for variable usage

Notes: The Engine

Standalone option
Eclipse-based

Syntax-highlighting editor with linked feedback
for errors & warnings, outline view

Source-level debugger
Build system

Transformation applications
URI mappings

Pragmatics: printlin, continue despite failure,
java invocation (dangerous)

Notes: Stratification

Rules must be stratified
I.e. a rule cannot depend on its own negation
E.g. cannot check for existence of a target

object and then create it
Hence no-check on target models. Tracking

hopefully allows a happy medium
Investigate streaming (serial transformations)

as a solution

Evaluation

Large-scale evaluation
Generation of test frameworks from UML

diagrams (Dai ‘04)
Model-merge for change propagation (Metke

‘05)
Health Record translation and Xform generation

Very large, many models, many subtleties

Open-source under investigation

Conclusion

The goal is to allow the user to focus on
what the transformation does, not how it

does it.

For more…

http://www.dstc.edu.au/Research/Projects/
Pegamento/tefkat/

Or just google for ‘tefkat’

