
Practical Declarative Model Transformation With

Tefkat

Michael Lawley1 and Jim Steel2

1 CRC for Enterprise Distributed Systems Technology (DSTC)??,
University of Queensland,

Brisbane, QLD 4072, Australia
michael@lawley.id.au

http://www.dstc.edu.au/

2 INRIA/Irisa
University of Rennes 1, France

jsteel@irisa.fr

Abstract. We present Tefkat, an implementation of a language designed
speci�cally for the transformation of MOF models using patterns and
rules. The language adopts a declarative paradigm, wherein users may
concern themselves solely with the relations between the models rather
than needing to deal explicitly with issues such as order of rule exe-
cution and pattern searching/traversal of input models. In this paper,
we demonstrate the language using a provided example and highlight
a number of language features used in solving the problem, a simple
object-to-relational mapping.

1 Introduction

Tefkat is the result of 5 years of research and development of languages for
model transformation [1,2,3,4], most recently in the context of the OMG's QVT
work [5]. In reaching the current point, one of the guiding principles has been
that model transformation be treated as a speci�c problem, and that approaches
treating it as a speci�c sub-problem of general-purpose programming will result
in languages ill-suited for the speci�c issues that face model transformation.

Exploring di�erent approaches to model transformations has revealed re-
quirements, patterns and approaches in writing transformations that appeared
very frequently when solving the prototypical examples of the problem space.
The current approach attempts as much as possible to build these mechanisms
into the language, in order that the programmer need not concern themselves
with problems such as implementing algorithms for detecting input model pat-
terns or ordering the application of their rules.

?? The work reported in this paper has been funded in part by the Co-operative Re-
search Centre for Enterprise Distributed Systems Technology (DSTC) through the
Australian Federal Government's CRC Programme (Department of Education, Sci-
ence, and Training).

In this paper we present a summary of the language and its features, using
a mandatory example to illustrate how they combine to allow users to construct
model transformations.

In Section 2 we present an overview of the language. In section 3 we elaborate
on some of the details of the language and how they are used in solving the
mandatory example. Section 4 presents a discussion of several aspects of Tefkat's
implementation, including its concrete syntax and environment. The full text of
the mandatory class-to-relational example may be found at the end of the paper
following the conclusion.

2 Language Overview

The Tefkat language is declarative, logic-based, and de�ned in terms of a MOF
metamodel. It has been speci�cally designed to address both the OMG's QVT
RFP [6] and additional requirements identi�ed as a result of a series of experi-
ments with di�erent transformation language approaches [1].

A Tefkat transformation speci�cation e�ectively asserts a set of constraints
that should hold over a collection of (disjoint) source and target extents (models).
These constraints can:

� assert the existence of object instances in a target extent,
� assert the type of object instances in a target extent,
� assert the value(s) of object features,
� assert the relative order of values of an object's feature, and
� assert that a named relationship holds between one or more values (usually
source and target object references).

A Tefkat language implementation uses these implied constraints to con-
struct, if possible, a suitable set of target models that satisfy the constraints.

There are several aspects of the language worth noting:

� transformations do not specify a traversal order of the input models, nor an
execution order for the rules � implementations must ensure that rules are
executed in an order that satis�es the semantics,

� transformations are constructive � you cannot constrain an object to not
exist, nor a feature to not have a particular value,

� it is not intended to describe or perform in-place model updates,
� change propagation can be supported through a model-merge process [7],
� the language is de�ned in terms of its abstract syntax (via a MOF meta-
model). Thus, several concrete syntaxes are possible. This paper uses an
SQL-inspired syntax.

Every transformation is expressed relative to three kinds of extents: one or
more source extents, one or more target extents, and a single tracking extent. A
transformation rule can query both source extents and the tracking extent, and
can constrain/make assertions about both the target extents and the tracking

extent. Thus the tracking extent is special since it is the only extent that can be
both queried and constrained.

More formally, a rule, r, can be considered to have two parts: the query, src,
and the constraint, tgt, and two sets of variables: those that occur in the query,
x, and those that occur only in the constraint, y. We can then write

r ≡ ∀x src(x) → ∃y tgt(x, y)

3 Mandatory Example

In this section we introduce various aspects of the Tefkat language via fragments
of the sample solution to the mandatory example. The full text of this solution
can be found in Appendix A.

As shown in Figure 1, a transformation is a named entity with named pa-
rameters for the input and output models that participate in the transformation.
Any number of metamodels may be imported by a transformation. This brings
all the EClassi�ers in these metamodels into consideration when class, datatype,
and enum names are resolved.

TRANSFORMATION mtip05_class_to_relational: class -> relational

IMPORT http:///mtip05/class.ecore
IMPORT http:///mtip05/rdbms.ecore

Fig. 1. Transformation De�nition

The transformation speci�cation then contains any number of class de�ni-
tions, rules, pattern de�nitions, and template de�nitions.

3.1 Class De�nitions

Class de�nitions allow for the simple speci�cation of ECore models and are part
of the concrete syntax of Tefkat, but not part of its abstract syntax. Their main
use is for de�nition of a transformation's tracking classes. Tracking classes are
part of the mechanism used to represent the named relationships between source
and target elements. Valid types for the features of these classes include all the
types that are in-scope as a result of IMPORT statements plus the ECore data-
types corresponding to: boolean, string, int, long, float, and double.

Figure 2 shows the de�nition of two classes that are used for tracking rela-
tionships in the sample solution. We discuss these further in Section 3.4 below.

Note that for complex transformations one would normally create a sepa-
rate meta-model de�ning these classes and import it into the transformation's
namespace.

CLASS ClsToTbl {
Class class;
Table table;

};

CLASS AttrToCol {
Class class;
Attribute attr;
Column col;

};

Fig. 2. (Tracking) Class De�nitions

3.2 Rules

Rules are the primary action elements of the transformation. Broadly speaking,
each rule consists of two constraints - source and target - that share variables.
More speci�cally, the rule matches and then constrains a number of objects,
either from the source model or from the trackings, and then creates (or ensures
the existence of) a number of target model objects with a set of constraints.

RULE ClassAndTable(C, T)
FORALL Class C {

is_persistent: true;
name: N;

}
MAKE Table T {

name: N;
}

LINKING ClsToTbl WITH class = C, table = T;

Fig. 3. Rule De�nition

For example, Figure 3 matches all instances of Class (in the default extent,
class) for which the is_persistent attribute is true. and asserts that a Table

with the same name must exist and that the ClsToTbl relationship holds for the
corresponding Class and Table instances.

Since the semantics of rules requires the target to always hold whenever the
source holds, we can use a target of FALSE to encode constraints that input
models should satisfy in order for the transformation to be valid.

In the example, a non-persistent class with an association to itself would
result in an in�nite number of columns being created. Figure 4 shows a rule
whose source pattern matches the illegal condition and whose target pattern is
simply FALSE. Note the use of the built-in Pattern println to provide useful
feedback in case the constraint is violated.

RULE constraint_no_reflexive_relations_on_non_persistent_classes
FORALL Class C
WHERE C.is_persistent = false

AND ClassHasReference(C, C, _)
AND println("Found a non-persistent class in relation (by association

or attribute) with itself: ", C)
SET FALSE;

Fig. 4. Rule de�nition for a constraint

3.3 Pattern and Template De�nitions

Pattern and template de�nitions are used to name and parameterise constraints
that may be used in multiple rules. Pattern de�nitions correspond to source
constraints and template de�nitions correspond to target constraints.

A pattern/template may be recursively de�ned. That is, it may directly or in-
directly refer to itself. Such recursion is commonly used when matching recursive
tree or graph structures like the parent reference of Class in the example.

Figure 5 illustrates several patterns used in the solution of the mandatory
example. Note the recursive nature of the pattern ClassHasAttr to drill down

into a Class's attributes re�ecting the recursive nature of the speci�cation's
rules 2, 4, and 5.

3.4 Trackings

Tracking classes are used to represent mapping relationships between source and
target elements. While they may directly re�ect a relationship established by a
single rule (such as ClassAndTable in Figure 3), multiple rules may contribute
to a single tracking relationship. This allows other rules that depend on that
relationship to be decoupled from the details of how the relationship is estab-
lished.

As discussed in [2,4], decoupling the rules that establish a mapping relation-
ship from those that depend on that relationship is a key aspect of supporting
maintainability and re-use of rules and transformations.

3.5 FROM clauses

For any non-trivial transformation one needs to be able to carefully control the
number of objects that are created. In Tefkat this information is represented in
the abstract syntax by an Injection term. The corresponding concrete syntax
is the optional FROM clause. There will be exactly one object created for each
unique tuple corresponding to a FROM.

In the case of MAKE clauses that do not contain explicit FROM clauses, an
implicit FROM is constructed as follows: the label is the concatenation of the rule
name and the name of the target instance variable, and the parameters are the

PATTERN ClassHasAttr(Class, Attr, Name, IsKey)
WHERE ClassHasSimpleAttr(Class, Attr, Name, IsKey)

OR ClassHasIncludedAttr(Class, Attr, Name, IsKey)
OR ClassChildHasAttr(Class, Attr, Name, IsKey);

PATTERN ClassHasSimpleAttr(Class, Attr, Name, IsKey)
FORALL Class Class {

attrs: Attribute Attr {
type: PrimitiveDataType _PT;
name: Name;
is_primary: IsKey;

};
};

PATTERN ClassHasIncludedAttr(Class, Attr, Name, IsKey)
FORALL Class Class
WHERE ClassHasReference(Class, Type, RefName)

AND ClassHasAttr(Type, Attr, AttrName, IsKeyForType)
AND IF Type.is_persistent = true

THEN
IsKeyForType = true AND
IsKey = false

ELSE
IsKey = IsKeyForType

ENDIF
AND Name = join("_", RefName, AttrName);

PATTERN ClassChildHasAttr(Class, Attr, Name, IsKey)
FORALL Class SubClass
WHERE Class = SubClass.parent

AND ClassHasAttr(SubClass, Attr, Name, IsKey)
AND IsKey = false;

Fig. 5. Sample Pattern de�nitions

set of variables corresponding to source instances in the containing rule's FORALL
clause.

For example, the implicit FROM clause for MAKE Table T in Figure 3 is: FROM
ClassAndTable_T(C).

RULE MakeColumns
WHERE ClassHasAttr(C, A, N, IsKey)

AND ClsToTbl LINKS class = C, table = T
MAKE Column Col FROM col(C, N) {

name: N;
type: A.type.name;

}
SET T.cols = Col,

IF IsKey = true
THEN

SET T.pkey = Col
ENDIF

LINKING AttrToCol WITH class = C, attr = A, col = Col;

Fig. 6. Use of a FROM clause

Figure 6 shows a case where an explicit FROM is required. The originating
Class and the path of attributes and associations, as encoded in the name
bound to N uniquely identify the Columns to be created.

The use of an explicit FROM clause allows multiple rules to separately and
independently assert the existence of a target object, with only a single object
being actually created. Again, this enhances the maintainability and re-usablility
of rules and transformations.

4 Language Implementation

4.1 Concrete Syntax

The concrete syntax of Tefkat was initially designed to feel familiar and comfort-
able to programmers with experience using SQL, another declarative language,
and also to suggest an intuitive semantics that help direct the writing of rules.

The only major change to the syntax since its �rst speci�cation has been the
introduction of object literals as illustrated in Figure 7.

Object literals are pure syntactic sugar designed to make rules more succinct
and readable since, with appropriate formatting, they expose explicit structure
in the constraints being speci�ed.

Figure 8 shows the equivalent constraint expressed without using object lit-
eral synyax.

Another concrete syntax feature that deserves special mention is the use of
variables whose name begins with an underscore. These variables are termed

Class Class {
attrs: Attribute Attr {

type: PrimitiveDataType _PT;
name: Name;
is_primary: IsKey;

};
}

Fig. 7. A simple obect literal

Class Class AND
Class.attrs = Attr AND
Attribute Attr AND
Attr.type = PT AND
PrimitiveDataType PT AND
Attr.name = Name AND
Attr.is_primary = IsKey

Fig. 8. An equivalent constraint for Figure 7

anonymous variables and references to them are, by de�nition, unique. That is,
if the variable name _PT, for example, is used more than once in an individual
rule, patterm, or temaplate, then each reference de�nes and refers to a di�erent
variable.

While not an error, the parser will emit a warning when an anonymous
variable (except for the variables named by a single underscore) is used more
than once. The parser will also emit a warning when a variable whose name
does not begin with an underscore is used only once in a given rule. By naming
variables to avoid these warnings, simple spelling mistakes and some copy-and-
paste errors are more easily detected, which is a real bonus for a language that
does not require variables to be explicitly declared.

4.2 Advanced Language Features

Tefkat is designed to support transformations that span meta-levels. There are
two key features that enable this: re�ection, and the Any Type.

Support for re�ection comes in two parts. The simplest is allowing access
to the re�ective features that every object implicitly inherits from EObject.
For example, you can access an object's container object with O.eContainer(),
all its contained objects with O.eContents(), and its meta-class object with
O.eClass().

The more advanced aspect is the ability to use an arbitrary expression, pre-
�xed by a dollar symbol, anywhere a type name or feature name may be used. In
the simplest case, O.$"name" = A is equivalent to O.name = N. Other examples
include O.$join("_", N1, N2) = A which gets the value of an attribute whose

name is the concatentation of N1, "_", and N2, and O1.name = N AND $N O2

which binds O2 to all instances of the class named by the value of N.

The Any Type is represented by an underscore. It behaves like an implicit
universal supertype of all types. This allows a transformation rule to match all
objects regardless of their actual type and without requiring an explicit common
supertype. To illustrate this, Figure 9 shows a transformation that makes a copy
of an arbitrary input model.

TRANSFORMATION copy : src -> tgt

IMPORT http://www.eclipse.org/emf/2002/Ecore

CLASS ObjToObj {
EObject src;
EObject tgt;

};

RULE copyObjects
FORALL _ Src
MAKE $Src.eClass() Tgt
LINKING ObjToObj WITH src = Src, tgt = Tgt;

RULE copyAttributeValues
WHERE ObjToObj LINKS src = Src, tgt = Tgt

AND Src.eClass() = Class
AND Class.eAllAttributes = Attr
AND Attr.changeable = true
AND Src.eIsSet(Attr) = true
AND Value = Src.$Attr

SET Tgt.$Attr = Value;

RULE copyObjectReferences
WHERE ObjToObj LINKS src = Src, tgt = Tgt

AND Src.eClass() = Class
AND Class.eAllReferences = Ref
AND Ref.changeable = true
AND Src.eIsSet(Ref) = true
AND Value = Src.$Ref
AND ObjToObj LINKS src = Value, tgt = TgtValue

SET Tgt.$Ref = TgtValue;

Fig. 9. A generic copy transformation

4.3 The Engine and Environment

The Tefkat engine is suitable for standalone use and is invokable from the
command-line, but for most developers it will be used as part of a full-featured
set of Eclipse plugins. These include a syntax-highlighting editor that is inte-
grated with the parser to provide direct, linked feedback on parser errors and
warnings. Figure 10 shows this editor, including a warning about a singleton
variable use. Note the outline view to the right. Clicking on an entry in this view
will cause the editor to jump to the appropriate line.

Fig. 10. The Tefkat editor for Eclipse

Also included with the Eclipse plugin is a source-level debugger, shown in
Figure 11. Running the transformation in the debugger allows you to single step
through the evaluation of each term in a rule. Variables and their bindings are
shown in the view at the top right, while the stack displays the current term and
the terms of the current rule that have been evaluated leading to this point.

While very useful, the debugger does su�er some limitations. Being a declar-
ative logic-based language, the execution model is somewhat like that of Prolog.
Thus the internal state is a set of trees rather than the stack of traditional
procedural languages for which the Eclipse debugging framework is designed.

This, coupled with the need to re-order terms during evaluation for both
e�ciency and semantic correctness (for example, ensuring that a variable is
bound to an object before attempting to get a feature's value), means that it

Fig. 11. The Tefkat source-level debugger for Eclipse

can sometimes be di�cult to follow a rule's execution, although the integrated
source highlighting helps a great deal.

To improve the debugging experience we would like to explore the use of
annotations to describe the expected behaviour of parts of rules. This would be
similar to the determinism declarations used in Mercury [8]. In the longer term,
it may also be possible to adapt concepts from declarative debugging [9].

Tefkat is integrated with the Eclipse build system. Its con�guration is stored
as a model in the �le tefkat.xml. This describes one or more transformation
applications in terms of source and target models, an optional trace model for
recording which rules and source elements were used to create which target
elements, and any mappings required to translate URIs naming meta-models
to resolvable URLs. The build integration allows a transformation to be re-run
whenever the speci�cation or any of the source models is updated.

Alternatively, the normal Eclipse launch mechanism can be used to manually
execute a transformation. This is also how debugging mode is entered.

Finally, Tefkat includes several concessions to pragmatics. Firstly, as shown in
Figure 4, Tefkat includes the pre-de�ned pattern println which always succeeds,
binds no variables, and prints its arguments to the console. Its main use is as a
probe for debugging.

Also useful for debugging is the ability to tell Tefkat to continue executing
rather than aborting when a rule fails. This means that target and trace models
are still generated and, although they result from buggy rules, they can be very
useful for post-mortem debugging.

Another concession is the ability to invoke methods on objects, not just access
features. This includes not just those methods de�ned in the meta-model, but
also those that make up the Java implementation. Since Tefkat is built on EMF,
this includes all the re�ective methods from EObject. Note that calling methods
that have side-e�ects is a dangerous and unpredictable thing to do since Tefkat
makes no guarantees about evaluation order.

4.4 Limitations

One technical aspect of the language is the need for transformations to be strat-
i�ed. Essentially this means that a rule (or pattern) cannot depend (directly or
indirectly) on its own negation. For example, a rule cannot check that there are
no instances of a tracking class, and then create an instance of that tracking
class.

It is the need to be able to determine strati�ability of a transformation that
gives rise to the limitations on querying elements in target extents. Tefkat's
support for re�ection means that determining negative dependencies in the face
of arbitrary target extent queries would impose too great a cost. By limiting
queries to source extents and the special tracking extent, this cost is avoided.

The price, however, is that complex transformations may need to store large
amounts of information in the tracking classes. Future work will investigate
whether it is practical to relax some of the limitations on querying target extents.

One possible way to mitigate this problem is to stream transformations.
That is, instead of specifying a single large transformation that does everything,
perform a series of smaller transformations. In this way, target extents from
earlier transformations become queriable source extents in later transformations.

While this form of transformation composition can be done outside of the
Tefkat language, we believe there are bene�ts to supporting it and other forms
of composition directly in the language.

5 Conclusion

The example, typical of those used as both exemplary and motivating problems
for model transformation, shows how the use of a declarative language allows
transformation writers to focus their endeavours on the logic of the transforma-
tion rather than on how to facilitate its execution.

The example presented, although interesting, is by necessity small in scale.
A number of other works are currently underway using the language and en-
gine that are o�ering valuable feedback and serving to evaluate their ability to
deal with large-scale examples. In [10], the authors have written Tefkat trans-
formations to generate UML2 Testing Pro�le models from UML requirements
and design models. In [7], the author addresses the problem of change propaga-
tion for Tefkat, and implements it using transformations themselves written in
Tefkat. One transformation takes as input the updated source model, the origi-
nal (possibly updated) target models and a newly generated target model, and
the trace models for the original and new transformations and produces a delta
model. The delta model represents the di�erences between the old and new tar-
get models. Based on heuristics and user feedback, a subsequent transformation
produces a �nal target model that preserves any manual changes that may have
been made between transformation executions.

In addition, the engine is also being used to manage the transformation
between electronic health record formats and to generate Xforms for input of

health record information. The metamodels and transformations in each of these
examples are both large and complex. The Xform transformation is also of par-
ticular interest because it takes two meta-models as input (a reference model,
and an archetype model [11]), and produces an XML Schema-based model as
output. Additionally, it needs to combine implicit hints from both input models
to construct a useful ordering of input �elds and labels in the resulting Xform.

Our experiences with Tefkat demonstrate that declarative transformation
speci�cation is both practical and productive. A declarative speci�cation means
you can concentrate on what the transformation should do rather than getting
caught up in how the transformation should do it.

References

1. Gerber, A., Lawley, M., Raymond, K., Steel, J., Wood, A.: Transformation: The
missing link of MDA. In Corradini, A., Ehrig, H., Kreowski, H.J., Rozemberg,
G., eds.: Proc. 1st International Conference on Graph Transformation, ICGT'02.
Volume 2505 of Lecture Notes in Computer Science., Springer Verlag (2002) 90�105

2. Duddy, K., Gerber, A., Lawley, M., Raymond, K., Steel, J.: Model transformation:
A declarative, reusable patterns approach. In: Proc. 7th IEEE International Enter-
prise Distributed Object Computing Conference, EDOC 2003, Brisbane, Australia
(2003) 174�195

3. Duddy, K., Gerber, A., Lawley, M., Raymond, K., Steel, J.: Declarative trans-
formation for object-oriented models. In van Bommel, P., ed.: Transformation of
Knowledge, Information, and Data: Theory and Applications. Idea Group Pub-
lishing (2004)

4. Lawley, M., Duddy, K., Gerber, A., Raymond, K.: Language features for re-use
and maintainability of MDA transformations. In: OOPSLA workshop on Best
Practices for Model-Driven Software Development, Vancouver, Canada (2004)

5. DSTC, IBM, CBOP: MOF Query/View/Transformation, initial submission (2003)
6. OMG: Request for Proposal: MOF 2.0 Query/Views/Transformations RFP. OMG

Document: ad/02-04-10 (2002)
7. Metke, A.: Change propagation in the MDA: A model merging approach. Master's

thesis, School of Information Technology and Electrical Engineering, The Univer-
sity of Queensland (2005)

8. Henderson, F., Somogyi, Z., Conway, T.: Determinism analysis in the Mercury
compiler. In: Proceedings of the Australian Computer Science Conference, Mel-
bourne, Australia (1996) 337�346

9. Naish, L.: A three-valued declarative debugging scheme. Technical Report 97/5,
Department of Computer Science, University of Melbourne, Melbourne, Australia
(1997)

10. Dai, Z.R.: Model-driven testing with UML 2.0. In Akehurst, D., ed.: Second
European Workshop on Model Driven Architecture (MDA), Canterbury, Kent,
University of Kent (2004) 179�187

11. Beale, T., Goodchild, A., Heard, S.: EHR design principles.
http://titanium.dstc.edu.au/papers/ehr_design_principles.pdf (2002)

AppendixA

Complete Code for Class to RDBMS transformation

TRANSFORMATION mtip05_class_to_relational: class -> relational

IMPORT platform:/resource/mtip05/models/class.ecore
IMPORT platform:/resource/mtip05/models/rdbms.ecore

CLASS ClsToTbl {
Class class;
Table table;

};

CLASS AttrToCol {
Class class;
Attribute attr;
Column col;

};

// --

// Class-typed Attributes and Associations are equivalent
//
PATTERN ClassHasReference(SrcClass, DstClass, RefName)

WHERE Attrs(SrcClass, DstClass, RefName)
OR References(SrcClass, DstClass, RefName)

;

PATTERN Attrs(SrcClass, DstClass, RefName)
FORALL Class SrcClass { attrs: Attribute _ { type: Class DstClass; name: RefName; }; }

;

PATTERN References(SrcClass, DstClass, RefName)
FORALL Association _ { src: SrcClass; dest: DstClass; name: RefName; }

;

// A Class "has" an Attribute for the purposes of the mapping if
// 1. It is directly owned and a primitive type
// 2. A referenced Class (via an Attribute or an Association) "has" the Attribute
// 3. The Class's children "have" the Attribute
//
PATTERN ClassHasAttr(Class, Attr, Name, IsKey)

WHERE ClassHasSimpleAttr(Class, Attr, Name, IsKey)
OR ClassHasIncludedAttr(Class, Attr, Name, IsKey)
OR ClassChildHasAttr(Class, Attr, Name, IsKey)

;

PATTERN ClassHasSimpleAttr(Class, Attr, Name, IsKey)

FORALL Class Class {
attrs: Attribute Attr {

type: PrimitiveDataType _PT;
name: Name;

};
}

WHERE IsKey = Attr.is_primary
;

PATTERN ClassHasIncludedAttr(Class, Attr, Name, IsKey)
FORALL Class Class
WHERE ClassHasReference(Class, Type, RefName)

AND ClassHasAttr(Type, Attr, AttrName, IsKeyForType)
AND IF Type.is_persistent = true

THEN
IsKeyForType = true AND
IsKey = false

ELSE
IsKey = IsKeyForType

ENDIF
AND Name = join("_", RefName, AttrName)

;

PATTERN ClassChildHasAttr(Class, Attr, Name, IsKey)
FORALL Class SubClass
WHERE Class = SubClass.parent

AND ClassHasAttr(SubClass, Attr, Name, IsKey)
AND IsKey = false // Sub-classes cannot add keys

;

PATTERN RootClass(Class, Root)
WHERE IF Parent = Class.parent

THEN
RootClass(Parent, Root)

ELSE
Root = Class

ENDIF
;

// --

// 1. Classes that are marked as persistent in the source model
// should be transformed into a single table of the same
// name in the target model.
//
RULE ClassAndTable(C, T)

FORALL Class C {
is_persistent: true;
name: N;

}
MAKE Table T {

name: N;
}
LINKING ClsToTbl WITH class = C, table = T

;

// Transitively owned Attributes map to Columns
// If the Attribute is primary, so is the corresponding Column
// BUT ONLY IF THE Attribute's Class IS NOT PERSISTENT
//
RULE MakeColumns

WHERE ClassHasAttr(C, A, N, IsKey)
AND ClsToTbl LINKS class = C, table = T

MAKE Column Col FROM col(C, N) {
name: N;
type: A.type.name;

}
SET T.cols = Col,

IF IsKey = true
THEN

SET T.pkey = Col
ENDIF

LINKING AttrToCol WITH class = C, attr = A, col = Col
;

// References to persistent Classes result in an FKey to
// the corresponding Table
// Columns corresponding to primary Attributes of the target Class
// constitute the corresponding foreign key columns
//
RULE MakeFKeys

WHERE ClassHasReference(Class, TgtClass, RefName)
AND TgtClass.is_persistent = true
AND RootClass(Class, SrcClass)
AND ClsToTbl LINKS class = SrcClass, table = SrcTable
AND ClsToTbl LINKS class = TgtClass, table = TgtTable
// now determine the foreign key Columns
AND AttrToCol LINKS class = SrcClass, attr = Attr, col = Col
AND ClassHasAttr(TgtClass, Attr, _, true)

MAKE FKey FKey FROM fkey(SrcTable, TgtTable, RefName) {
references: TgtTable;
cols: Col;

}
SET SrcTable.fkeys = FKey

;

// --

// Aborts the transformation in case the constraint is violated
//
RULE constraint_only_root_classes_may_be_persistent

FORALL Class C
WHERE C.is_persistent = true

AND C.parent = _
AND println("Found a persistent non-root class: ", C)

SET FALSE
;

// The recursion would loop infinitely for any class with a
// relation to itself, so these cases must be invalid for the
// transformation
//
RULE constraint_no_reflexive_relations_on_non_persistent_classes

FORALL Class C
WHERE C.is_persistent = false

AND ClassHasReference(C, C, _) // This doesn't handle transitive cases
AND println("Found a non-persistent class in relation with itself: ", C)

SET FALSE
;

