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Abstract 

Tefkat is an implementation of a rule- and pattern-based 
engine for the transformation of models defined using the 
Object Management Group’s (OMG) Model-Driven 
Architecture (MDA). The process for the development of 
the engine included the concurrent development of a unit 
test suite for the engine. The test suite is constructed as a 
number of models, whose elements comprise the test 
cases, and which are passed to a test harness for 
processing. The paper discusses the difficulties and 
opportunities encountered in the process, and draws 
implications for the broader problem of testing in a 
model-driven environment, and of using models for 
testing. 

1 Introduction 

 The Object Management Group’s Model-Driven 
Architecture [12] describes a scenario for the development 
of applications where the concept of models is central, and 
where these models are connected by transformations. 
This approach builds on and leverages the existing OMG 
modelling specifications such as the Unified Modelling 
Language (UML) [17], the XML-Based Model 
Interchange (XMI) [18], and in particular the Meta-Object 
Facility (MOF) [15]. 

As the central concept for the connection and 
interrelationship of models in a model-driven engineering 
scenario, it is vital that model transformations be very 
reliable, and that this reliability can be validated by 
thorough testing. Such testing must be done at two levels. 
Firstly, the language/s used to describe and define the 
transformations must be validated, and secondly, the 
transformations themselves must be validated. 

There are generally two approaches to the implementation 
of a language for model transformations. In the first, each 
transformation is used as the basis for the generation of a 
component that will transform the models. In the second, a 
single “transformation engine” is used to ensure that the 
models provided obey a transformation, and to alter one or 
more of them until they do. 

In this paper, we present the architecture used for 
development and implementation of a test suite and 
harness for a transformation engine for a specific model-
transformation language, XMorph. This testing process 
presented a number of unique challenges, because of the 
challenges of testing in an MDA environment, and 
because of the role played by a transformation engine 
within this environment. 

Testing in MDA represents a new challenge compared to 
testing in traditional systems [3] or object-oriented 
systems [4]. This is because the data involved are models, 
which have significantly more complex structures than 
simple data types or traditional objects. In fact, the testing 
problems in MDA more closely resembles those of testing 
interpreters or virtual machines [19], and are also related 
to testing grammars [13] or compilers [12]. 

This paper is divided as follows. In section 2, we give a 
background to the MDA, and in particular to the concepts 
of models and model transformations, and the various 
approaches to transformation. Following this, in section 3 
we give a more detailed description of the specific model 
transformation language used, XMorph. In section 4 we 
give a broad overview of the general architecture of the 
Tefkat engine, which implements XMorph. Following 
this, in section 5 we detail the architectures and processes 
involved in the testing of the engine's two major 
components: the pattern matcher and the pattern resolver. 



Finally, in sections 6 and 7, we draw conclusions on the 
problems encountered, and offer insights into the broader 
problems of testing in an MDA setting. 

2 Background to MDA 

The central idea of MDA is that a system's architecture 
can be expressed as a number of models, related by model 
transformations. The idea is most commonly applied to 
the process of system development, whereby a system is 
specified using one or several high-level "platform-
independent" models, which are successively refined into 
increasingly "platform-specific" models, which are 
eventually realised as source code for the running system. 

The central concepts of MDA are those of metamodel, 
model and model transformation. These are described 
briefly below. 

2.1 Models and Metamodels 

At its most abstract level, a model is a series of objects 
that represent the elements of some system. These models 
are described by a modelling language, which is defined 
in MDA by a metamodel. A metamodel is also a model, 
but more specifically it is a model that describes the 
structure of a language. In the MDA, metamodels are 
defined using the Meta-Object Facility (MOF) [15], which 
is thus a meta-metamodel. The problem of successive 
metamodels is solved by reflection: the MOF is self-
describing. 

The relationship between these can be seen in the 
following example. If one takes the case of a banking 
database, at the lowest level one has the data: John Smith, 
Savings Account number 12345, and Commonwealth 
Bank Ballarat Branch. These are described by the database 
schema, a model which might include: Accounts Table, 
Person Column, AccountNumber Column. The 
metamodel for database schemas, in turn, contains 
concepts like Table and Column, and that Tables Contains 
Columns. This in turn is described by MOF classes and 
associations. 

2.2 Model Transformations 

In 2002, the OMG issued a request for proposals [16] of a 
language for describing the relationships between two or 
more models as described by their respective metamodels. 
A number of languages [6] have been submitted, and the 
process of merging and selecting a single language for 

adoption as a standard is still underway. Generally, the 
languages can be separated into three groups. 

The first group proposes languages which are imperative 
in their control structures. These languages include 
submissions based on UML Action Semantics, and those 
bearing more similarity to languages like Java. 

The languages of the second group provide pattern 
matching for selection of source-model elements, and then 
imperative constructs for the subsequent creation of 
target-model objects. These languages bear structural 
similarity to languages such as XSLT and awk. 

The third group uses pattern matching for the selection of 
source-model elements, but also uses patterns for the 
subsequent population of target models. The language 
under consideration here, XMorph, belongs to this third 
group, and is described in more detail in the following 
section. 

2.3 Testing Transformations 

The experiences of testing a model transformation engine 
discussed in this paper are a special case of the more 
general problem of testing a model transformation. 

To understand this relationship, let 

• t  be  a transformation engine, 

• T be a transformation specification, 

• MS be a source model, 

• MT be a target model, and 

• O be an oracle, either partial, or preferably total. 

Then, a test case is a tuple, <T, MS, MT, O>. 

As described in this paper, to test the transformation 
engine, t , we take T and MS then compare the result of t (T, 
MS) with MT based on O. This determines whether t  is 
behaving either correctly or incorrectly. 

To test a transformation specification, T, we would do 
exactly the same thing, but by assuming that t  behaves 
correctly, we must conclude that it is the specification, T, 
that is correct or incorrect. 



3 The XMorph Transformation Language 

The XMorph language, described more completely in [8], 
and motivated by [9] defines transformations as a set of 
rules. Each rule consists of a pair of constraints: one for 
selecting a pattern from the source model/s, and another 
for populating a pattern in the target model/s. These 
patterns are expressed as parameterised logical 
constraints, where the parameters provide the link 
between the source-model pattern and the target-model 
pattern. Furthermore, the language allows patterns to be 
defined outside of rules, and to be referred to by rules. 

The structure language is specified using a MOF 
metamodel and is shown in Figure 1. In addition to the 
metamodel, the language has an associated concrete 
syntax which, for usability reasons, is based on the style 
of SQL. An extract from a transformation written in this 
concrete syntax is as follows. 

 
TRANSFORMATION uml2rdbms(uml, rel) 
 
IMPORT UMLRelationalTracking.ecore 
 
RULE Class2Table(c, t) 
    FORALL  UMLClass c 
    WHERE   c.kind = "persistent" 
    MAKE    Table t, Key k 
    SETTING t.key = k; 
 
PATTERN hasAttr(c, a) 
    FORALL UMLClass c 
    WHERE  (c.attributes = a 
        OR (c.superclass = c2 
            AND hasAttr(c2, a)); 
 

After specifying its name and its parameters, the 
transformation specifies its tracking metamodel. This 
model represents the structure of the relationship between, 
in this case, the UML and RDBMS models that are the 
parameters of the transformation. Since the Tefkat engine 
uses the Eclipse Modelling Framework [5] for its models, 
this reference points to an ECore XML file that contains 
the metamodel. 

The transformation then goes on to specify a number of 
rules and patterns that constrain the population of this 
structure with actual relationship between, in the case of 

Figure 1 Abstract Syntax of the XMorph Language 
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the first rule, UML Classes and RDBMS tables. The rules 
may either define the constraints themselves, or reference 
constraints defined as patterns, as in the case of the 
hasAttribute pattern in the example. More complete 
versions of this transformation can be found either in [8] 
or on the Tefkat Demonstration web site [7]. 

4 The Tefkat Engine 

The Tefkat engine is a Java-based implementation of the 
XMorph transformation language, which uses the Eclipse 
Modelling Framework (EMF) [5] as its modelling 
environment. The particular components of Tefkat whose 
testing environments are of interest here are the source 
pattern matcher, and the target pattern resolver. A number 
of other components, such as the rule orderer and the 
model reconciler, also form important parts of the system, 
but they are not discussed here. 

The source-pattern matcher evaluates a parameterized 
pattern definition, and returns all of the parameter 
bindings in the source model/s which satisfy the provided 
pattern. A source pattern is described by a tree of Term 
and Expression instances contained by a root instance of a 
concrete sub-type of Term. 

The target-pattern resolver takes these bindings and, for 
each one, ensures that the appropriately instantiated target 
pattern is resolved in the target model/s. A target pattern is 
described by a set of concrete sub-types of SimpleTerm 
and their contained Expression instances. 

Both these components effectively implement a back-
tracking tree-walker where the source-pattern matcher 
checks the existence of object instances and the values of 
their attributes while the target-pattern resolver may create 
objects or set attribute values to ensure a target pattern 
holds. 

Naturally, the structure of these components is very 
similar. In each case, the component consists of separate 
handlers for each concrete subtype of Term in the 
XMorph metamodel (see Figure 1), e.g. for AndTerm, 
OrTerm, MofInstance, and Condition. 

Each of these handlers deals with a number of possible 
cases for the values contained by the constituent model 
elements corresponding to the contained Expressions 
containing an unbound variable or being evaluable to one 
or more values. 

The engine as a whole comprises approximately 4000 to 
5000 lines of Java code. The components under discussion 
here comprise approximately 1000 lines of code apiece. 

5 Testing the Engine  

This section describes the general approach to testing the 
engine, and the test frameworks that were developed for 

two of the most significant components of the Tefkat 
engine; the source-pattern matcher, and the target-pattern 
resolver, as described in the previous section. 

5.1 General Approach to Testing 

The engine as a whole was developed using a bottom-up 
approach using a methodology including test-driven 
development and other agile-methods techniques. Being 
the most important, and most complex, components of the 
system, the pattern matching and resolving components 
were the main focus of testing. 

5.1.1 Partitioning Into Units 

There is some conjecture about the best technique for 
assigning units in object-oriented development. Many 
sources advise the treatment of each class as a unit, while 
others support alternative divisions such as by method. 

In this case, the engine is implemented using a service-
oriented paradigm, and its primary role is one of data-
centric processing. As such, the components were divided 
into units based on the structure of the XMorph language. 
That is, each unit corresponds to the functionality that 
deals with a single concept in the language metamodel (as 
shown in Figure 1). In general, this corresponds to a single 
method in the implementation code. 

5.1.2 Test Case Selection 

The selection of test cases was performed using criteria on 
the XMorph language metamodel elements. For each 
metamodel element under test, both functional and 
robustness test cases were generated. The elements, such 
as MofInstance, requiring testing with the target resolver 
represent a subset of those requiring testing with the 
source matcher, but the different semantics dictate that the 
test cases be distinct. These test case structures are 
discussed in sections 5.2.1 and 5.3.1. 

For functional tests, data was generated based on the 
coverage of interesting structural partitions of the 
appropriate metamodel element. For example, to test an 
AndTerm, it was required to test the conjunction of two 
Terms evaluating to “true”, two terms evaluating to 
“false”, a combination of “true” and “false”, and 
subsequent cases for conjunctions of more than two terms. 

Two robustness criteria were used. The first involved the 
generation of structures that were illegal according to the 
constraints on the language’s metamodel. For example, an 
AndTerm containing no Terms should be detected as 
illegal because it disobeys the rule of having one or more 
contained Terms. Secondly, robustness test cases were 
generated for models disobeying the static semantics of 
the language as expressed in its formal description in [6]. 
For example, a MofInstance whose typename does not 
resolve to a valid type should be reported as an error. 



The application of these criteria to generate test cases was 
done by hand. This was necessitated in part by the lack of 
a formal (machine-readable) description of many well-
formedness rules (beyond those in the metamodel) in the 
specification, and partly for reasons of expediency. 

5.1.3 Oracle 

The nature of the oracle is the most significant difference 
between the testing of the two components. Both are 
partial oracles; they only partially discriminate between 
results that indicate success or failure of a test. The oracle 
for the source matcher consists of encoded textual strings, 
but this proved insufficient for the target resolver. We 
describe this in more detail below. 

5.2 Test Framework for the Source Pattern 
Matcher 

The source pattern matcher consists of ~1000 lines of Java 
code, although it also makes use of a large amount of the 
system’s structural library code. 34 separate test cases 
were developed for the initial phase of the source pattern 
matcher’s development, which supported approximately 6 
units of the system. 

5.2.1 Test Data Structures and Generation 

The inputs for the source-pattern matcher consist of a 
pattern with which to match, and a model to match 
against. 

Since the body of a PatternDefn is equivalent to the src of 
a TRule (see Figure 1), PatternDefns were used as 
containers for test case patterns to allow separation of 
testing the source pattern-matcher from the target-pattern 
resolver. Each test case was defined in a PatternDefn, and 
all test case PatternDefns were contained within a single 
Transformation, as the test suite. To separate PatternDefns 
that should be considered as test cases from those included 
to test the PatternUse term, a “test” prefix to the name of 
the PatternDefn was added, followed by a nominal name 
of the test case, for diagnosis purposes. 

For the models against which these patterns match, it was 
decided to use the test-case model itself. This is possible 
because transformations, and hence the test cases, are 
themselves defined as models. For example, a test case for 

MofInstance might consist of a pattern to match against 
any instances of the class called “PatternDefn”. If it were 
the sole test case in the test suite, it would match once, 
against itself. It was expected that the large size of the test 
suite as a source model would allow for definition of 
sufficient test cases to cover the range of language 
features. 

This decision was made to avoid the problem of having to 
define separate source models for each test case. This was 
a particularly unattractive proposition in the early stages 
of development, when the test-case input model instances 
were being explicitly constructed in the JUnit 
initialisation. However, the decision later lead to problems 
of test case interference. This is discussed in Section 6.2. 

5.2.2 Oracle 

The oracle for the test system was encoded explicitly in 
the name given to each test pattern. More specifically, the 
name was divided as follows: 

1. the “test” prefix, to indicate that the pattern should 
be considered as a test case, 

2. the name of the test case, for diagnosis purposes, 
and 

3. one of “True<N>”, “False”, or “Exception” as a 
suffix, to indicate the expected outcome of the test 
case. 

“False” indicated that no matches were expected for the 
rule. “True” indicated that the rule should match, and a 
subsequent integer N could, optionally, indicate the 
number of expected matches. “Exception” indicated that 
the test was intended as a robustness test, and should 
result in an exception. 

A full oracle for the source-pattern matcher would have 
included the provision of a set of bindings of all the 
variables in the test pattern to objects in the source model 
for the true case. However, for the sake of expediency, it 
was decided to omit the expected bindings and use only a 
partial oracle. 



Figure 3 illustrates two simple functional test cases for the 
source-pattern matcher. The first, “testEmptyGoalTrue”, 
is a simple test case of a pattern with no constraint as its 
body, which should match true. The second, 
“testMofInstanceExactTrue”, is a test case for 
MofInstance, which tests for the existence of any object 
exactly of the type PatternDefn. This should succeed, 
since there is an object of that type in the test case itself, 
and another in the “testEmptyGoalTrue” test case. The 
textual version of these tests, in the XMorph concrete 
syntax, is as follows. 

 

PATTERN testEmptyGoalTrue( ) 
 
PATTERN testMofInstanceExactTrue(x) 
    FORALL  PatternDefn x 

 

5.3 Testing the Target-Pattern Resolver 

This section describes the techniques used to test the 
target pattern resolver component of the engine. As with 
the source patter matcher, the target pattern resolver 
component is divided into units based on the handling of 
single metamodel elements, and comprises ~1000 lines of 
Java code. 

The testing of this component presented the greatest 
challenge in terms of the architecture of the test structures 
and environment. Only 4 test cases were produced before 
it was realised that a more heavyweight approach was 
required to testing this component. The reasons for this 
realisation are discussed below, and further in section 6.4. 

5.3.1 Test Data Structures and Generation 

The inputs for the target-pattern resolver consist of a 
transformation rule with a source pattern for matching and 
a target pattern for resolving, and a model to match 
against. In this way, the testing of the target resolver also 
depended on the successful execution of the source 
matcher. 

For the target-pattern resolver, each test case was defined 
as a transformation rule, and all test case rules were 
contained within a single transformation. Again, a “test” 
prefix to the name of the rule was added to signify that the 
rule represented a test case, and it was followed by a 
nominal name of the test case, for diagnosis purposes. 

5.3.2 Oracle 

A full oracle for the target-pattern resolver would include, 
for each test case, the expected result in the form of a 
model that could be compared with the actual output from 
the resolver. However, again for the sake of expediency, a 
partial oracle was preferred. 

The same naming scheme was used for encoding the 
oracle, but this proved to be somewhat limited in 
expressive power since tests of rules that should succeed 
really need to check that the resulting target model 
actually contains the expected objects with the expected 
values for attributes and references. Despite this limitation 
in completeness, simply checking for an expected success, 
failure, or exception proved quite effective for the initial 
implementation of the target-pattern resolver. 

Figure 3 Two simple tests for the Source-Matcher  
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Figure 4 shows an example of a test case for the target-
pattern resolver, in which the existence of an instance in 
the source model of the Person class should result in an 
instance in the target model of the Account class, and a 
relationship between the two corresponding to the 
PersonToAccount tracking class. The textual version of 
this test case is as follows. 

 
RULE testMofInstanceTrue(x, y) 
  FORALL  Person x 
  MAKE    Account y 
  LINKING PersonToAccount 
     WITH person = x, account = y; 

 

6 Observations 

During the development and application of these testing 
mechanisms, a number of observations were made of the 
problem in general. The most significant of these are 
discussed in the following sections. 

6.1 Test Harness 

The test harness was developed using JUnit [10]. Initially, 
the test cases were constructed using programmatic 
interfaces to EMF to create the necessary transformation 
language structures. 

However, this quickly became repetitive and unwieldy, 
with test cases becoming unreasonably difficult to define 
and excess effort spent debugging the construction of the 
test cases themselves. As such, the switch was made to 
defining the test cases separately from the test harness as 
models defined in the XMI [18] notation, which could 
then be edited either directly by editing the XMI files or 

through the graphical interfaces provided by the EMF 
framework and Eclipse. 

The JUnit harness was then modified to load in the test 
models and to run test cases based on their contents. 

6.2 Test case interference 

The decision to use the test patterns as the source models 
for themselves was one made to reduce the initial setup 
cost of the test suite, in that it obviated the need to define 
a separate source model. However, from a maintenance 
standpoint it raised the problem that a change to the test 
suite, including the addition of a new test case, also meant 
a change to the source model for each test, and hence 
possible changes to the oracles of each of the existing test 
cases. 

Creating a separate, but still common, source model 
partially solves this problem, however, in this case it is 
still often necessary to add elements to the source model 
as new tests are added to the test suite and this leads to the 
same maintenance problem. To avoid this we refactored 
the testing framework to use multiple pairs of 
transformation model and source model (i.e., test suites). 

For testing transformation rules, the use of multiple 
transformation/source model pairs became necessary since 
the evaluation of a transformation rule usually has side-
effects and we needed to ensure that groups of rules did 
not interact with each other. 

6.3 Use of models as test data 

The use of models as test data resulted in a dramatic 
increase in the ease of defining a test case pattern and its 
source model. This was due to the intrinsic advantage of 
using the EMF-generated metamodel-specific editor rather 

Figure 4 Simple test case for the Target-Resolver 
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than more general programmatic interfaces, and is a 
truism for the definition of most complex data structures. 

From a methodology standpoint, this increased ease of test 
definition lead to developers creating many more tests. 
This in turn helped to accelerate the development of the 
engine, and to guide the direction of development effort. 

However, the most conspicuous problem raised by this 
move was that of version maintenance. When the 
discovery of shortcomings in the transformation language 
led to changes in the language metamodel, the use of 
XML documents as models meant that even a small 
change in the DTD or schema generated from the 
metamodel resulted in the test data failing to be 
recognized by the metamodel-specific tools. At this point 
it became necessary to hand-edit the XMI of the models to 
roll forward the test data to the new version of the 
transformation language. 

On one hand this should not be surprising; if the required 
semantics of a system change, then one would expect that 
the tests will need to change to reflect the new semantics. 
On the other hand, the inability to gracefully handle 
unexpected XML indicates a degree of brittleness in some 
of the EMF-supplied infrastructure on which we were 
building. This problem, characterised as Version Skew, is 
further discussed in section 7.2. 

6.4 Limited Oracle 

The naming-scheme based oracle proved very effective 
for the initial set of test cases since they focused on testing 
boundary conditions and simplistic categorizations of 
functionality of individual language elements. 

However, when attempting to construct effective test 
cases for more complex combinations of language 
elements (e.g., OrTerm and IfThenTerm), the limited 
expressiveness of True<N>/False/Exception becomes a 
major stumbling block. 

The natural solution to this problem, that of adding 
expected target and tracking models to the specification of 
a test suite is not entirely straightforward, since one needs 
a mechanism to perform an equivalence comparison of the 
actual output from a transformation with these sample 
models. In the context of EMF this is non-trivial, since the 
ECore metamodel has no general mechanism for 
specifying which, if any, features of a class are identifying 
(i.e., comprise a key)1. Thus, given any two Java Objects 

                                                           

1 ECore does allow a single attribute to operate as a key, 
but does not support multi-valued keys, nor is there a 
mechanism for comparing the identity of objects where no 
attribute operates as a key. 

representing instances of one class, there is no way to 
determine whether or not they represent the same instance. 

In the short term we plan to investigate the use of several 
XML-diff algorithms [21] applied to the XMI 
representations of the various models. This is complicated 
by the fact that, while the order of elements is significant 
in a generic XML document, it is sometimes but not 
always significant in an XMI document. 

In the longer term, some research has also been done into 
the field of model difference and union [1], which may 
alleviate some of the problems encountered by the 
mapping of the model to XML. 

6.5 Automated test model generation 

An unexploited opportunity of using models to drive the 
testing was the possibility of semi-automatically 
generating a significant number of test cases. 

Because the test models are instances of a known meta-
model that includes such information as cardinality 
constraints on references, it is possible to automate the 
construction of sets of model instances that correspond to 
simple valid instances of the metamodel that cover the 
various corner cases. Such corner cases include 
cardinalities of 0, 1, or > 1 for multi-valued references, 
and references to instances of concrete sub-types of the 
reference’s type. For example, three test cases could be 
generated for AndTerm corresponding to an AndTerm 
containing zero Terms, an AndTerm containing one Term, 
and an AndTerm containing more than one Term. 

Having generated such test models, one is then faced with 
a number of problems: 

• How values should be assigned to the attributes of 
the model elements, especially since the choice of 
values will determine the expected outcome of the 
test case. 

Indeed, many structurally equivalent test models 
may be needed with alternate attribute values in 
order to achieve appropriate coverage. 

It may be possible to further automate the process 
of assigning attribute values by providing the test 
model generation process with sample source 
metamodels, models, and tracking models. 

• Many constraints on the model are not explicitly 
manifest in the metamodel, so some of the 
generated instances will violate these constraints 
and should therefore be tagged as robustness cases 
(Exceptions) in the oracle. 

• Since CompoundTerms can recursively contain 
other CompoundTerms, the containment depth 



needs to be limited to avoid generating an infinite 
number of test models. 

We are currently investigating this issue, using two 
approaches. In the first, the structural information of the 
transformation, i.e. the source and tracking metamodels, 
can be used to facilitate test generation, as above. In the 
second, information in the specification (black-box) or 
definition (white-box) can be used to enhance the test 
cases by identifying interesting subsets of the source 
metamodels. 

7 General Relevance 

Although interesting in themselves, the principal 
significance of these observations is that they point to 
issues that apply generally to testing in a model driven 
environment. 

7.1 Relationship to Testing Virtual Machines 

Virtual machines are the most similar comparable 
technology because they operate on byte-code which most 
closely resembles the notion of a model instance. This is 
because the tests of interest are performed at a level 
independent of any on-disk representation of the input. 
Thus we are not testing the syntactic correctness of some 
serialisation of a model instance, but rather the correctness 
of the implemented behaviour of the model instance. 

Furthermore, the transformation engine is the most 
generic of MDA components. Typically, the engine takes 
in a transformation (represented by a model instance), as 
well as a number of source and target model instances, as 
parameters. For meaningful execution, these models must 
be appropriately related; the source and target models 
must be typed according to the types used in the 
transformation. Thus testing the engine requires providing 
appropriate transformations as well as corresponding 
source and target models. Drawing on the analogy with 
testing virtual machine implementations, the 
transformation corresponds to some byte-code and the 
source and target models to the initial and final state as 
manipulated by the byte-code. Where this differs from 
byte-code is that it is relatively trivial to twiddle the bits of 
byte-code to produce more-or-less valid, but possibly 
semantically quite different, variations of a test case. This 
is possible because byte-code is an encoded representation 
and is untyped. The model instances that an MDA tool 
manipulates are strongly typed which makes meaningful 
random mutation much harder. 

In Section 6.5 above we discussed issues surrounding 
automated test model generation. The work of Sirer [19] 
on using grammars to help automate generation of test 
cases for the Java virtual machine suggests that this may 
be adaptable to guide the automated generation of test 
model instances. Note however that these tests are mostly 
useful for detection of gross errors and performance 

problems rather than checking for semantics correctness 
since they are unable to automatically generate the 
required expected output of a generated test case. 

7.2 Version Skew 

Version skew in an MDA environment occurs when a 
metamodel is changed, and its instances (e.g., MS, T, MT, 
etc) are no longer valid instances of the new metamodel. 
In our case, since the metamodel describing the 
transformation language is relatively stable, the problem 
of version-skew between the transformation language 
metamodel and the test cases was not a major issue. 

However, in the broader context of testing transformation 
specifications, it is likely to be much more of a problem. 
One approach to dealing with this version skew that is 
being explored [10, 20], is to explicitly represent the 
changes to the metamodel, and to semi-automatically 
produce a transformation specification that migrates 
instances of the old metamodel to instances of the new 
metamodel. 

However, all-or-nothing nature of parsing XMI 
documents, with respect to unexpected XML elements, 
indicates that practical and mature MDA tools will need to 
aim for more graceful handling of error conditions. 

8 Conclusion 

Adopting a model-based test-driven approach to 
implementing the Tefkat transformation engine lead to 
greater productivity, a more robust implementation, and 
enhanced the experience for the implementers. The test 
infrastructure that was developed offers both insights into 
testing in a model-driven environment, and a practical 
starting point for a more general testing framework for 
model-driven systems. 

It is not surprising that writing tests and ensuring they 
pass leads to more robust code. More interestingly, the 
test-driven approach provided structure to the 
implementation process, which resulted in less time being 
spent in deciding what to do next. It also required that a 
runnable, albeit incomplete, version of the system be 
produced in small increments. This in turn led to an 
increased sense of implementer satisfaction and a resulting 
enthusiasm to make progress, all well-documented results 
of the extreme programming approach. 

A direct contribution to this was the upgrade of the testing 
harness to directly load XMI representations of test cases 
rather than requiring programmatically constructed test 
cases. Since tools were available to directly construct the 
test cases, it became a much less arduous task and the 
implementers began constructing more test cases so that 
each language unit was given greater test coverage. 



As a result of the work reported here, a number of 
conclusions can be drawn about testing practices for 
systems built using MDA principles. Firstly, it is 
important to maintain test models in serialized form (such 
as XMI), rather than programmatic form, to better provide 
for the efficient definition and evolution of the test suite. 
Secondly, a structured approach to the definition and 
management of the test cases is necessary to avoid 
problems of test interference. The issues surrounding the 
comparison of models by an oracle are currently under 
exploration, and it is expected that the use of the 
<XMLUnit/> framework will allow for the provision of 
the required enhanced expressive power. 

As discussed, the testing of a model transformation engine 
has considerable bearing on the testing of individual 
model transformations. We feel that the test harness 
developed for Terfkat can, with extensions to provide a 
more complete oracle, serve as the basis of a more general 
framework for testing model transformations. Associated 
issues, such as version skew, are the subjects of active 
research, and are likely to be addressed as model-driven 
engineering matures as a discipline. 
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