
Model-Based Test Driven Development of the
Tefkat Model-Transformation Engine

Jim Steel1 and Michael Lawley2

1: INRIA/Irisa
University of Rennes 1, France

jsteel@irisa.fr

2: Distributed Systems Technology Centre (DSTC)
University of Queensland, Australia

lawley@dstc.edu.au

Abstract

Tefkat is an implementation of a rule- and pattern-based
engine for the transformation of models defined using the
Object Management Group’s (OMG) Model-Driven
Architecture (MDA). The process for the development of
the engine included the concurrent development of a unit
test suite for the engine. The test suite is constructed as a
number of models, whose elements comprise the test
cases, and which are passed to a test harness for
processing. The paper discusses the difficulties and
opportunities encountered in the process, and draws
implications for the broader problem of testing in a
model-driven environment, and of using models for
testing.

1 Introduction

 The Object Management Group’s Model-Driven
Architecture [12] describes a scenario for the development
of applications where the concept of models is central, and
where these models are connected by transformations.
This approach builds on and leverages the existing OMG
modelling specifications such as the Unified Modelling
Language (UML) [17], the XML-Based Model
Interchange (XMI) [18], and in particular the Meta-Object
Facility (MOF) [15].

As the central concept for the connection and
interrelationship of models in a model-driven engineering
scenario, it is vital that model transformations be very
reliable, and that this reliability can be validated by
thorough testing. Such testing must be done at two levels.
Firstly, the language/s used to describe and define the
transformations must be validated, and secondly, the
transformations themselves must be validated.

There are generally two approaches to the implementation
of a language for model transformations. In the first, each
transformation is used as the basis for the generation of a
component that will transform the models. In the second, a
single “transformation engine” is used to ensure that the
models provided obey a transformation, and to alter one or
more of them until they do.

In this paper, we present the architecture used for
development and implementation of a test suite and
harness for a transformation engine for a specific model-
transformation language, XMorph. This testing process
presented a number of unique challenges, because of the
challenges of testing in an MDA environment, and
because of the role played by a transformation engine
within this environment.

Testing in MDA represents a new challenge compared to
testing in traditional systems [3] or object-oriented
systems [4]. This is because the data involved are models,
which have significantly more complex structures than
simple data types or traditional objects. In fact, the testing
problems in MDA more closely resembles those of testing
interpreters or virtual machines [19], and are also related
to testing grammars [13] or compilers [12].

This paper is divided as follows. In section 2, we give a
background to the MDA, and in particular to the concepts
of models and model transformations, and the various
approaches to transformation. Following this, in section 3
we give a more detailed description of the specific model
transformation language used, XMorph. In section 4 we
give a broad overview of the general architecture of the
Tefkat engine, which implements XMorph. Following
this, in section 5 we detail the architectures and processes
involved in the testing of the engine's two major
components: the pattern matcher and the pattern resolver.

Finally, in sections 6 and 7, we draw conclusions on the
problems encountered, and offer insights into the broader
problems of testing in an MDA setting.

2 Background to MDA

The central idea of MDA is that a system's architecture
can be expressed as a number of models, related by model
transformations. The idea is most commonly applied to
the process of system development, whereby a system is
specified using one or several high-level "platform-
independent" models, which are successively refined into
increasingly "platform-specific" models, which are
eventually realised as source code for the running system.

The central concepts of MDA are those of metamodel,
model and model transformation. These are described
briefly below.

2.1 Models and Metamodels

At its most abstract level, a model is a series of objects
that represent the elements of some system. These models
are described by a modelling language, which is defined
in MDA by a metamodel. A metamodel is also a model,
but more specifically it is a model that describes the
structure of a language. In the MDA, metamodels are
defined using the Meta-Object Facility (MOF) [15], which
is thus a meta-metamodel. The problem of successive
metamodels is solved by reflection: the MOF is self-
describing.

The relationship between these can be seen in the
following example. If one takes the case of a banking
database, at the lowest level one has the data: John Smith,
Savings Account number 12345, and Commonwealth
Bank Ballarat Branch. These are described by the database
schema, a model which might include: Accounts Table,
Person Column, AccountNumber Column. The
metamodel for database schemas, in turn, contains
concepts like Table and Column, and that Tables Contains
Columns. This in turn is described by MOF classes and
associations.

2.2 Model Transformations

In 2002, the OMG issued a request for proposals [16] of a
language for describing the relationships between two or
more models as described by their respective metamodels.
A number of languages [6] have been submitted, and the
process of merging and selecting a single language for

adoption as a standard is still underway. Generally, the
languages can be separated into three groups.

The first group proposes languages which are imperative
in their control structures. These languages include
submissions based on UML Action Semantics, and those
bearing more similarity to languages like Java.

The languages of the second group provide pattern
matching for selection of source-model elements, and then
imperative constructs for the subsequent creation of
target-model objects. These languages bear structural
similarity to languages such as XSLT and awk.

The third group uses pattern matching for the selection of
source-model elements, but also uses patterns for the
subsequent population of target models. The language
under consideration here, XMorph, belongs to this third
group, and is described in more detail in the following
section.

2.3 Testing Transformations

The experiences of testing a model transformation engine
discussed in this paper are a special case of the more
general problem of testing a model transformation.

To understand this relationship, let

• t be a transformation engine,

• T be a transformation specification,

• MS be a source model,

• MT be a target model, and

• O be an oracle, either partial, or preferably total.

Then, a test case is a tuple, <T, MS, MT, O>.

As described in this paper, to test the transformation
engine, t , we take T and MS then compare the result of t (T,
MS) with MT based on O. This determines whether t is
behaving either correctly or incorrectly.

To test a transformation specification, T, we would do
exactly the same thing, but by assuming that t behaves
correctly, we must conclude that it is the specification, T,
that is correct or incorrect.

3 The XMorph Transformation Language

The XMorph language, described more completely in [8],
and motivated by [9] defines transformations as a set of
rules. Each rule consists of a pair of constraints: one for
selecting a pattern from the source model/s, and another
for populating a pattern in the target model/s. These
patterns are expressed as parameterised logical
constraints, where the parameters provide the link
between the source-model pattern and the target-model
pattern. Furthermore, the language allows patterns to be
defined outside of rules, and to be referred to by rules.

The structure language is specified using a MOF
metamodel and is shown in Figure 1. In addition to the
metamodel, the language has an associated concrete
syntax which, for usability reasons, is based on the style
of SQL. An extract from a transformation written in this
concrete syntax is as follows.

TRANSFORMATION uml2rdbms(uml, rel)

IMPORT UMLRelationalTracking.ecore

RULE Class2Table(c, t)
 FORALL UMLClass c
 WHERE c.kind = "persistent"
 MAKE Table t, Key k
 SETTING t.key = k;

PATTERN hasAttr(c, a)
 FORALL UMLClass c
 WHERE (c.attributes = a
 OR (c.superclass = c2
 AND hasAttr(c2, a));

After specifying its name and its parameters, the
transformation specifies its tracking metamodel. This
model represents the structure of the relationship between,
in this case, the UML and RDBMS models that are the
parameters of the transformation. Since the Tefkat engine
uses the Eclipse Modelling Framework [5] for its models,
this reference points to an ECore XML file that contains
the metamodel.

The transformation then goes on to specify a number of
rules and patterns that constrain the population of this
structure with actual relationship between, in the case of

Figure 1 Abstract Syntax of the XMorph Language

StringConstant IntConstant

TRule

Transformation

-expr 0..1
-arg *

-extended

*

-extender*-superseded *

-superseder

*

-transformation

1

-trule

*

+function

FunctionExpr

-scope

1

-patternDefn

*
PatternDefn

CompoundExpr

+name

VarScope

+isExactly
+/typeName : Expression
+/instance : Expression

MofInstance

-trule0..1

-tgt*

-trule0..1

-src

0..1

-compoundTerm

0..1

-term 1..*

-scope

1

-var

*

+name

AbstractVar

Term

+featureName

MofOrder

Expression

-superseded

*

-superseder*

-extended*

-extender

*

-relation

Condition

-var

1

VarUse

AndTerm

CompoundTerm

NotTerm

-context 0..1

-tracking

1

*

OrTerm

-greater

1
-lesser

1

IfTerm

Query

+collect
+featureName

FeatureExpr

MofTerm

+unique
+ordered

CollectionExpr

-patternDefn0..1

-body

1

PatternUse

PatternScope

-featureNames

TrackingUse

-term

1

-arg*-query0..1

-term

1

SimpleTerm

BooleanConstant

+representation

SimpleExpr

EnumConstant

ExtentVar

-name

MOF::Class

MOF::Property Key-part

*

PatternVar TRuleVar

InstanceRef MOF::Object-obj

1

-instance

1

-/parameter*

-/parameter *

1

-keys *

the first rule, UML Classes and RDBMS tables. The rules
may either define the constraints themselves, or reference
constraints defined as patterns, as in the case of the
hasAttribute pattern in the example. More complete
versions of this transformation can be found either in [8]
or on the Tefkat Demonstration web site [7].

4 The Tefkat Engine

The Tefkat engine is a Java-based implementation of the
XMorph transformation language, which uses the Eclipse
Modelling Framework (EMF) [5] as its modelling
environment. The particular components of Tefkat whose
testing environments are of interest here are the source
pattern matcher, and the target pattern resolver. A number
of other components, such as the rule orderer and the
model reconciler, also form important parts of the system,
but they are not discussed here.

The source-pattern matcher evaluates a parameterized
pattern definition, and returns all of the parameter
bindings in the source model/s which satisfy the provided
pattern. A source pattern is described by a tree of Term
and Expression instances contained by a root instance of a
concrete sub-type of Term.

The target-pattern resolver takes these bindings and, for
each one, ensures that the appropriately instantiated target
pattern is resolved in the target model/s. A target pattern is
described by a set of concrete sub-types of SimpleTerm
and their contained Expression instances.

Both these components effectively implement a back-
tracking tree-walker where the source-pattern matcher
checks the existence of object instances and the values of
their attributes while the target-pattern resolver may create
objects or set attribute values to ensure a target pattern
holds.

Naturally, the structure of these components is very
similar. In each case, the component consists of separate
handlers for each concrete subtype of Term in the
XMorph metamodel (see Figure 1), e.g. for AndTerm,
OrTerm, MofInstance, and Condition.

Each of these handlers deals with a number of possible
cases for the values contained by the constituent model
elements corresponding to the contained Expressions
containing an unbound variable or being evaluable to one
or more values.

The engine as a whole comprises approximately 4000 to
5000 lines of Java code. The components under discussion
here comprise approximately 1000 lines of code apiece.

5 Testing the Engine

This section describes the general approach to testing the
engine, and the test frameworks that were developed for

two of the most significant components of the Tefkat
engine; the source-pattern matcher, and the target-pattern
resolver, as described in the previous section.

5.1 General Approach to Testing

The engine as a whole was developed using a bottom-up
approach using a methodology including test-driven
development and other agile-methods techniques. Being
the most important, and most complex, components of the
system, the pattern matching and resolving components
were the main focus of testing.

5.1.1 Partitioning Into Units

There is some conjecture about the best technique for
assigning units in object-oriented development. Many
sources advise the treatment of each class as a unit, while
others support alternative divisions such as by method.

In this case, the engine is implemented using a service-
oriented paradigm, and its primary role is one of data-
centric processing. As such, the components were divided
into units based on the structure of the XMorph language.
That is, each unit corresponds to the functionality that
deals with a single concept in the language metamodel (as
shown in Figure 1). In general, this corresponds to a single
method in the implementation code.

5.1.2 Test Case Selection

The selection of test cases was performed using criteria on
the XMorph language metamodel elements. For each
metamodel element under test, both functional and
robustness test cases were generated. The elements, such
as MofInstance, requiring testing with the target resolver
represent a subset of those requiring testing with the
source matcher, but the different semantics dictate that the
test cases be distinct. These test case structures are
discussed in sections 5.2.1 and 5.3.1.

For functional tests, data was generated based on the
coverage of interesting structural partitions of the
appropriate metamodel element. For example, to test an
AndTerm, it was required to test the conjunction of two
Terms evaluating to “true”, two terms evaluating to
“false”, a combination of “true” and “false”, and
subsequent cases for conjunctions of more than two terms.

Two robustness criteria were used. The first involved the
generation of structures that were illegal according to the
constraints on the language’s metamodel. For example, an
AndTerm containing no Terms should be detected as
illegal because it disobeys the rule of having one or more
contained Terms. Secondly, robustness test cases were
generated for models disobeying the static semantics of
the language as expressed in its formal description in [6].
For example, a MofInstance whose typename does not
resolve to a valid type should be reported as an error.

The application of these criteria to generate test cases was
done by hand. This was necessitated in part by the lack of
a formal (machine-readable) description of many well-
formedness rules (beyond those in the metamodel) in the
specification, and partly for reasons of expediency.

5.1.3 Oracle

The nature of the oracle is the most significant difference
between the testing of the two components. Both are
partial oracles; they only partially discriminate between
results that indicate success or failure of a test. The oracle
for the source matcher consists of encoded textual strings,
but this proved insufficient for the target resolver. We
describe this in more detail below.

5.2 Test Framework for the Source Pattern
Matcher

The source pattern matcher consists of ~1000 lines of Java
code, although it also makes use of a large amount of the
system’s structural library code. 34 separate test cases
were developed for the initial phase of the source pattern
matcher’s development, which supported approximately 6
units of the system.

5.2.1 Test Data Structures and Generation

The inputs for the source-pattern matcher consist of a
pattern with which to match, and a model to match
against.

Since the body of a PatternDefn is equivalent to the src of
a TRule (see Figure 1), PatternDefns were used as
containers for test case patterns to allow separation of
testing the source pattern-matcher from the target-pattern
resolver. Each test case was defined in a PatternDefn, and
all test case PatternDefns were contained within a single
Transformation, as the test suite. To separate PatternDefns
that should be considered as test cases from those included
to test the PatternUse term, a “test” prefix to the name of
the PatternDefn was added, followed by a nominal name
of the test case, for diagnosis purposes.

For the models against which these patterns match, it was
decided to use the test-case model itself. This is possible
because transformations, and hence the test cases, are
themselves defined as models. For example, a test case for

MofInstance might consist of a pattern to match against
any instances of the class called “PatternDefn”. If it were
the sole test case in the test suite, it would match once,
against itself. It was expected that the large size of the test
suite as a source model would allow for definition of
sufficient test cases to cover the range of language
features.

This decision was made to avoid the problem of having to
define separate source models for each test case. This was
a particularly unattractive proposition in the early stages
of development, when the test-case input model instances
were being explicitly constructed in the JUnit
initialisation. However, the decision later lead to problems
of test case interference. This is discussed in Section 6.2.

5.2.2 Oracle

The oracle for the test system was encoded explicitly in
the name given to each test pattern. More specifically, the
name was divided as follows:

1. the “test” prefix, to indicate that the pattern should
be considered as a test case,

2. the name of the test case, for diagnosis purposes,
and

3. one of “True<N>”, “False”, or “Exception” as a
suffix, to indicate the expected outcome of the test
case.

“False” indicated that no matches were expected for the
rule. “True” indicated that the rule should match, and a
subsequent integer N could, optionally, indicate the
number of expected matches. “Exception” indicated that
the test was intended as a robustness test, and should
result in an exception.

A full oracle for the source-pattern matcher would have
included the provision of a set of bindings of all the
variables in the test pattern to objects in the source model
for the true case. However, for the sake of expediency, it
was decided to omit the expected bindings and use only a
partial oracle.

Figure 3 illustrates two simple functional test cases for the
source-pattern matcher. The first, “testEmptyGoalTrue”,
is a simple test case of a pattern with no constraint as its
body, which should match true. The second,
“testMofInstanceExactTrue”, is a test case for
MofInstance, which tests for the existence of any object
exactly of the type PatternDefn. This should succeed,
since there is an object of that type in the test case itself,
and another in the “testEmptyGoalTrue” test case. The
textual version of these tests, in the XMorph concrete
syntax, is as follows.

PATTERN testEmptyGoalTrue()

PATTERN testMofInstanceExactTrue(x)
 FORALL PatternDefn x

5.3 Testing the Target-Pattern Resolver

This section describes the techniques used to test the
target pattern resolver component of the engine. As with
the source patter matcher, the target pattern resolver
component is divided into units based on the handling of
single metamodel elements, and comprises ~1000 lines of
Java code.

The testing of this component presented the greatest
challenge in terms of the architecture of the test structures
and environment. Only 4 test cases were produced before
it was realised that a more heavyweight approach was
required to testing this component. The reasons for this
realisation are discussed below, and further in section 6.4.

5.3.1 Test Data Structures and Generation

The inputs for the target-pattern resolver consist of a
transformation rule with a source pattern for matching and
a target pattern for resolving, and a model to match
against. In this way, the testing of the target resolver also
depended on the successful execution of the source
matcher.

For the target-pattern resolver, each test case was defined
as a transformation rule, and all test case rules were
contained within a single transformation. Again, a “test”
prefix to the name of the rule was added to signify that the
rule represented a test case, and it was followed by a
nominal name of the test case, for diagnosis purposes.

5.3.2 Oracle

A full oracle for the target-pattern resolver would include,
for each test case, the expected result in the form of a
model that could be compared with the actual output from
the resolver. However, again for the sake of expediency, a
partial oracle was preferred.

The same naming scheme was used for encoding the
oracle, but this proved to be somewhat limited in
expressive power since tests of rules that should succeed
really need to check that the resulting target model
actually contains the expected objects with the expected
values for attributes and references. Despite this limitation
in completeness, simply checking for an expected success,
failure, or exception proved quite effective for the initial
implementation of the target-pattern resolver.

Figure 3 Two simple tests for the Source-Matcher

name = testEmptyGoalTrue

 : PatternDefn

name = testMofInstanceExactTrue

 : PatternDefn

isExactly
/typeName : Expression
/instance : Expression

 : MofInstance

name = X

 : PatternVar-/parameter

*

XUse : VarUse

term

instance

var

PatternDefn : StringConstant

patternDefn

body

term
typeName

scope

var

Figure 4 shows an example of a test case for the target-
pattern resolver, in which the existence of an instance in
the source model of the Person class should result in an
instance in the target model of the Account class, and a
relationship between the two corresponding to the
PersonToAccount tracking class. The textual version of
this test case is as follows.

RULE testMofInstanceTrue(x, y)
 FORALL Person x
 MAKE Account y
 LINKING PersonToAccount
 WITH person = x, account = y;

6 Observations

During the development and application of these testing
mechanisms, a number of observations were made of the
problem in general. The most significant of these are
discussed in the following sections.

6.1 Test Harness

The test harness was developed using JUnit [10]. Initially,
the test cases were constructed using programmatic
interfaces to EMF to create the necessary transformation
language structures.

However, this quickly became repetitive and unwieldy,
with test cases becoming unreasonably difficult to define
and excess effort spent debugging the construction of the
test cases themselves. As such, the switch was made to
defining the test cases separately from the test harness as
models defined in the XMI [18] notation, which could
then be edited either directly by editing the XMI files or

through the graphical interfaces provided by the EMF
framework and Eclipse.

The JUnit harness was then modified to load in the test
models and to run test cases based on their contents.

6.2 Test case interference

The decision to use the test patterns as the source models
for themselves was one made to reduce the initial setup
cost of the test suite, in that it obviated the need to define
a separate source model. However, from a maintenance
standpoint it raised the problem that a change to the test
suite, including the addition of a new test case, also meant
a change to the source model for each test, and hence
possible changes to the oracles of each of the existing test
cases.

Creating a separate, but still common, source model
partially solves this problem, however, in this case it is
still often necessary to add elements to the source model
as new tests are added to the test suite and this leads to the
same maintenance problem. To avoid this we refactored
the testing framework to use multiple pairs of
transformation model and source model (i.e., test suites).

For testing transformation rules, the use of multiple
transformation/source model pairs became necessary since
the evaluation of a transformation rule usually has side-
effects and we needed to ensure that groups of rules did
not interact with each other.

6.3 Use of models as test data

The use of models as test data resulted in a dramatic
increase in the ease of defining a test case pattern and its
source model. This was due to the intrinsic advantage of
using the EMF-generated metamodel-specific editor rather

Figure 4 Simple test case for the Target-Resolver

name = testMofInstanceTrue

 : TRule

isExactly = false
/typeName : Expression
/instance : Expression

 : MofInstance

src

isExactly = false
/typeName : Expression
/instance : Expression

 : MofInstance

featureNames

 : TrackingUse

trule

tgttgt

name = X

 : TRuleVar

name = Y

 : TRuleVar

Person : StringConstant Account : StringConstant

var

var

termtypeName termtypeName

 : VarUse : VarUse

term instance term instance

var

var

name = PersonToAccount

 : MOF::Class

tracking

 : VarUse : VarUse

value value

than more general programmatic interfaces, and is a
truism for the definition of most complex data structures.

From a methodology standpoint, this increased ease of test
definition lead to developers creating many more tests.
This in turn helped to accelerate the development of the
engine, and to guide the direction of development effort.

However, the most conspicuous problem raised by this
move was that of version maintenance. When the
discovery of shortcomings in the transformation language
led to changes in the language metamodel, the use of
XML documents as models meant that even a small
change in the DTD or schema generated from the
metamodel resulted in the test data failing to be
recognized by the metamodel-specific tools. At this point
it became necessary to hand-edit the XMI of the models to
roll forward the test data to the new version of the
transformation language.

On one hand this should not be surprising; if the required
semantics of a system change, then one would expect that
the tests will need to change to reflect the new semantics.
On the other hand, the inability to gracefully handle
unexpected XML indicates a degree of brittleness in some
of the EMF-supplied infrastructure on which we were
building. This problem, characterised as Version Skew, is
further discussed in section 7.2.

6.4 Limited Oracle

The naming-scheme based oracle proved very effective
for the initial set of test cases since they focused on testing
boundary conditions and simplistic categorizations of
functionality of individual language elements.

However, when attempting to construct effective test
cases for more complex combinations of language
elements (e.g., OrTerm and IfThenTerm), the limited
expressiveness of True<N>/False/Exception becomes a
major stumbling block.

The natural solution to this problem, that of adding
expected target and tracking models to the specification of
a test suite is not entirely straightforward, since one needs
a mechanism to perform an equivalence comparison of the
actual output from a transformation with these sample
models. In the context of EMF this is non-trivial, since the
ECore metamodel has no general mechanism for
specifying which, if any, features of a class are identifying
(i.e., comprise a key)1. Thus, given any two Java Objects

1 ECore does allow a single attribute to operate as a key,
but does not support multi-valued keys, nor is there a
mechanism for comparing the identity of objects where no
attribute operates as a key.

representing instances of one class, there is no way to
determine whether or not they represent the same instance.

In the short term we plan to investigate the use of several
XML-diff algorithms [21] applied to the XMI
representations of the various models. This is complicated
by the fact that, while the order of elements is significant
in a generic XML document, it is sometimes but not
always significant in an XMI document.

In the longer term, some research has also been done into
the field of model difference and union [1], which may
alleviate some of the problems encountered by the
mapping of the model to XML.

6.5 Automated test model generation

An unexploited opportunity of using models to drive the
testing was the possibility of semi-automatically
generating a significant number of test cases.

Because the test models are instances of a known meta-
model that includes such information as cardinality
constraints on references, it is possible to automate the
construction of sets of model instances that correspond to
simple valid instances of the metamodel that cover the
various corner cases. Such corner cases include
cardinalities of 0, 1, or > 1 for multi-valued references,
and references to instances of concrete sub-types of the
reference’s type. For example, three test cases could be
generated for AndTerm corresponding to an AndTerm
containing zero Terms, an AndTerm containing one Term,
and an AndTerm containing more than one Term.

Having generated such test models, one is then faced with
a number of problems:

• How values should be assigned to the attributes of
the model elements, especially since the choice of
values will determine the expected outcome of the
test case.

Indeed, many structurally equivalent test models
may be needed with alternate attribute values in
order to achieve appropriate coverage.

It may be possible to further automate the process
of assigning attribute values by providing the test
model generation process with sample source
metamodels, models, and tracking models.

• Many constraints on the model are not explicitly
manifest in the metamodel, so some of the
generated instances will violate these constraints
and should therefore be tagged as robustness cases
(Exceptions) in the oracle.

• Since CompoundTerms can recursively contain
other CompoundTerms, the containment depth

needs to be limited to avoid generating an infinite
number of test models.

We are currently investigating this issue, using two
approaches. In the first, the structural information of the
transformation, i.e. the source and tracking metamodels,
can be used to facilitate test generation, as above. In the
second, information in the specification (black-box) or
definition (white-box) can be used to enhance the test
cases by identifying interesting subsets of the source
metamodels.

7 General Relevance

Although interesting in themselves, the principal
significance of these observations is that they point to
issues that apply generally to testing in a model driven
environment.

7.1 Relationship to Testing Virtual Machines

Virtual machines are the most similar comparable
technology because they operate on byte-code which most
closely resembles the notion of a model instance. This is
because the tests of interest are performed at a level
independent of any on-disk representation of the input.
Thus we are not testing the syntactic correctness of some
serialisation of a model instance, but rather the correctness
of the implemented behaviour of the model instance.

Furthermore, the transformation engine is the most
generic of MDA components. Typically, the engine takes
in a transformation (represented by a model instance), as
well as a number of source and target model instances, as
parameters. For meaningful execution, these models must
be appropriately related; the source and target models
must be typed according to the types used in the
transformation. Thus testing the engine requires providing
appropriate transformations as well as corresponding
source and target models. Drawing on the analogy with
testing virtual machine implementations, the
transformation corresponds to some byte-code and the
source and target models to the initial and final state as
manipulated by the byte-code. Where this differs from
byte-code is that it is relatively trivial to twiddle the bits of
byte-code to produce more-or-less valid, but possibly
semantically quite different, variations of a test case. This
is possible because byte-code is an encoded representation
and is untyped. The model instances that an MDA tool
manipulates are strongly typed which makes meaningful
random mutation much harder.

In Section 6.5 above we discussed issues surrounding
automated test model generation. The work of Sirer [19]
on using grammars to help automate generation of test
cases for the Java virtual machine suggests that this may
be adaptable to guide the automated generation of test
model instances. Note however that these tests are mostly
useful for detection of gross errors and performance

problems rather than checking for semantics correctness
since they are unable to automatically generate the
required expected output of a generated test case.

7.2 Version Skew

Version skew in an MDA environment occurs when a
metamodel is changed, and its instances (e.g., MS, T, MT,
etc) are no longer valid instances of the new metamodel.
In our case, since the metamodel describing the
transformation language is relatively stable, the problem
of version-skew between the transformation language
metamodel and the test cases was not a major issue.

However, in the broader context of testing transformation
specifications, it is likely to be much more of a problem.
One approach to dealing with this version skew that is
being explored [10, 20], is to explicitly represent the
changes to the metamodel, and to semi-automatically
produce a transformation specification that migrates
instances of the old metamodel to instances of the new
metamodel.

However, all-or-nothing nature of parsing XMI
documents, with respect to unexpected XML elements,
indicates that practical and mature MDA tools will need to
aim for more graceful handling of error conditions.

8 Conclusion

Adopting a model-based test-driven approach to
implementing the Tefkat transformation engine lead to
greater productivity, a more robust implementation, and
enhanced the experience for the implementers. The test
infrastructure that was developed offers both insights into
testing in a model-driven environment, and a practical
starting point for a more general testing framework for
model-driven systems.

It is not surprising that writing tests and ensuring they
pass leads to more robust code. More interestingly, the
test-driven approach provided structure to the
implementation process, which resulted in less time being
spent in deciding what to do next. It also required that a
runnable, albeit incomplete, version of the system be
produced in small increments. This in turn led to an
increased sense of implementer satisfaction and a resulting
enthusiasm to make progress, all well-documented results
of the extreme programming approach.

A direct contribution to this was the upgrade of the testing
harness to directly load XMI representations of test cases
rather than requiring programmatically constructed test
cases. Since tools were available to directly construct the
test cases, it became a much less arduous task and the
implementers began constructing more test cases so that
each language unit was given greater test coverage.

As a result of the work reported here, a number of
conclusions can be drawn about testing practices for
systems built using MDA principles. Firstly, it is
important to maintain test models in serialized form (such
as XMI), rather than programmatic form, to better provide
for the efficient definition and evolution of the test suite.
Secondly, a structured approach to the definition and
management of the test cases is necessary to avoid
problems of test interference. The issues surrounding the
comparison of models by an oracle are currently under
exploration, and it is expected that the use of the
<XMLUnit/> framework will allow for the provision of
the required enhanced expressive power.

As discussed, the testing of a model transformation engine
has considerable bearing on the testing of individual
model transformations. We feel that the test harness
developed for Terfkat can, with extensions to provide a
more complete oracle, serve as the basis of a more general
framework for testing model transformations. Associated
issues, such as version skew, are the subjects of active
research, and are likely to be addressed as model-driven
engineering matures as a discipline.

9 Acknowledgements

The work reported in this paper has been funded in part by
the Co-operative Centre for Enterprise Distributed
Systems Technology (DSTC) through the Australian
Federal Government's CRC Programme (Department of
Education, Science and Training).

References

1. M. Alanen and I. Porres. Difference and Union of Models.
UML 2003, pages 2-17, Springer, 2003.

2. T. Bacon. A Tour of XMLUnit. Available from
http://xmlunit.sourceforge.net

3. B. Beizer. Software Testing Techniques, 2nd Edition. Van
Nostran Reinhold, 1990.

4. R. Binder. Testing object-oriented systems. Addison-
Wesley, 2000.

5. F. Budinsky, D. Steinberg, E. Merks, R. Ellersick, T. Grose.
Eclipse Modeling Framework. Addison & Wesley, 2003.

6. DSTC, IBM, CBOP. MOF Query/Views/Transformations,
Second Revised Submission. OMG Document no. ad/2004-
01-06, January 2004.

7. DSTC, Pty Ltd. Tefkat Demonstration,
http://www.dstc.edu.au:8080/qvt/, April 2004.

8. K. Duddy, A. Gerber, M. Lawley, K. Raymond, and J.
Steel. Model Transformation: A declarative, reusable
patterns approach. EDOC 2003, pages 174-185, IEEE
Computer Society, 2003.

9. A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood.
Transformation: The Missing Link of MDA. ICGT 2002,
pages 90-105, Springer 2002.

10. D. Hearnden, P. Bailes, M. Lawley, and K. Raymond.
Automating Software Evolution. IWPSE 2004, September
2004.

11. JUnit, Testing Resources for Extreme Programming.
http://www.junit.org, April 2004.

12. A. Kalinov, A. Kossatchev, A. Petrenko, M. Posypkin and
V. Shishkov. Coverage-Driven Automated Compiler Test
Suite Generation. Electronic Notes in Theoretical Computer
Science, Vol 82, Issue 3, Elsevier 2003.

13. R. Lämmel. Grammar Testing. FASE 2001, pages 201-216,
Springer 2001.

14. Object Management Group, Executive Overview: Model-
Driven Architecture. Available from
http://www.omg.org/mda.

15. Object Management Group (OMG), Meta-Object Facility
2.0 Core Final Adopted Specification, OMG Document
ptc/2003-10-04.

16. Object Management Group (OMG), MOF 2.0
Query/Views/Transformations RFP, OMG Document no.
ad/2002-04-10, April 2002.

17. Object Management Group (OMG), Unified Modeling
Language (UML) Specification

18. Object Management Group (OMG), XML-Based Model
Interchange (XMI) Specification.

19. E.G. Sirer. Testing Java Virtual Machines. International
Conference on Software Testing And Review, San Jose,
California, November 1999.

20. J. Sprinkle. Metamodel Driven Model Migration. PhD
Dissertation, August 2003.

21. Yuan Wang, David J. DeWitt, and Jin-Yi Cai. X-Diff: An
Effective Change Detection Algorithm for XML
Documents. ICDE 2003.

