
MOF Query / Views / Transformations
 Initial Submission
Submitted By:

DSTC
International Business Machines

3 March 2003
ad/2003-02-03: MOF Query / Views / Transformations

Copyright © 2003 DSTC, IBM Pty Ltd.

The companies listed above hereby grants a royalty-free license to the Object Management Group, Inc.
(OMG) for worldwide distribution of this document or any derivative works thereof within OMG and to OMG
members for evaluation purposes, so long as the OMG reproduces the copyright notices and the below
paragraphs on all distributed copies.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document
and distribute copies of the modified version.

The copyright holders listed above have agreed that no person shall be deemed to have infringed the
copyright, in the included material of any such copyright holder by reason of having used the specification
set forth herein or having conformed any computer software to the specification.

NOTICE: The information contained in this document is subject to change with notice.

The material in this document details a submission to the Object Management Group for evaluation in
accordance with the license and notices set forth on this page. This document does not represent a com-
mitment to implement any portion of this specification by the submitter.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND
WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. The Object Management
Group and the companies listed above shall not be liable for errors contained herein or for incidental or
consequential damages in connection with the furnishing, performance or use of this material.

The copyright holders listed above acknowledge that the Object Management Group (acting itself or
through its designees) is and shall at all times be the sole entity that may authorize developers, suppliers
and sellers of computer software to use certification marks, trademarks or other special designations to
indicate compliance with these materials.

All Rights Reserved. No part of the work covered by copyright hereon may be reproduced or used in any
form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or
information storage and retrieval systems--without permission of the copyright owner. All copies of this
document must include the copyright and other information contained on this page.

The copyright owners grant member companies of the OMG permission to make a limited number of cop-
ies of this document (up to fifty copies) for their internal use as part of the OMG evaluation process.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions
as set forth in subdivision (c) (1) (ii) of the Right in Technical, Data and Computer Software Clause at
DFARS 252.227.7013

OMG® is a registered trademark of the Object Management Group, Inc.
2 ad/2003-02-03: MOF Query / Views / Transformations

Table of Contents

.........9

....

........1

.......10

.......11

.........12
......14

........14

.......15

.......17
......18

......20

....

.....23
.....23

........25

.........

........

........29
1 Overview ..9

1.1 Primary Contacts for the QVT submission...

1.2 Acknowledgments..9

1.3 Structure of This Submission...10

1.4 Resolution of RFP Requirements ..0

1.4.1 Mandatory Requirements...
1.4.2 Optional Requirements ..
1.4.3 Issues to be discussed...
1.4.4 Evaluation Criteria ..

1.5 Proof of Concept ..14

1.6 Changes to other OMG Specifications ..

2 Overall Design Rationale..15

2.1 Relationship between Queries, Views, and Transformations ...

2.2 Requirements ...17

2.2.1 Functional Requirements ...
2.2.2 Usability Requirements...

2.3 Our Overall Approach..19

2.3.1 Styles of Transformation...

2.4 Example of Transformation ...21

2.4.1 Relationship between Transformation Model and EMOF and CMOF................
2.4.2 Relationship between Transformation Model and OCL......................................

3 Using the Transformation Model ..25

3.1 Example UML, Java, and Tag models...

3.2 Notation..26

3.3 Transformation...26

3.4 Transformation Rules...27

3.5 MofTerms ..27

3.6 Trackings and Correspondences ...28

3.7 Pattern Definitions and Pattern Uses ...28

3.8 Transformation Rule Extending and Superseding ...

3.9 Tracking Hierarchies..30

3.10 MofTerm Ordering...30

3.11 Extents..31

3.12 Full example...32
ad/2003-02-03: MOF Query / Views / Transformations 3

Table of Contents

.....

.....35
......35
......35
......35

.....37
......37
......37
......37
........
.....37
......38
......38
......38
......
.....38
......38
......39
......39
..
.....39
......39
......39
......39
......3
.....39
......40
......40
......40
..
.....41
......41
......42
......42
.....
......43
......43
......43
4 Transformation Language Semantics...35

4.1 Introduction..35

4.2 The Model..35

4.2.1 VarScope..35
4.2.1 Attributes..
4.2.1 Associations ..
4.2.1 Constraints ..
4.2.1 Semantics ..

4.2.2 Var...35
4.2.2 Attributes..
4.2.2 Associations ..
4.2.2 Constraints ..
4.2.2 Semantics ..

4.2.3 PatternScope ...37
4.2.3 Attributes..
4.2.3 Associations ..
4.2.3 Constraints ..
4.2.3 Semantics ..

4.2.4 PatternDefn ...38
4.2.4 Attributes...
4.2.4 Associations ..
4.2.4 Constraints ..
4.2.4 Semantics ..

4.2.5 Query...39
4.2.5 Attributes...
4.2.5 Associations ..
4.2.5 Constraints ..
4.2.5 Semantics ..

4.2.6 Transformation..9
4.2.6 Attributes..
4.2.6 Associations ..
4.2.6 Constraints ..
4.2.6 Semantics ..

4.2.7 TRule...40
4.2.7 Attributes..
4.2.7 Associations ..
4.2.7 Constraints ..
• Semantics...

4.2.8 MofTerm..43
4.2.8 Associations ..
4.2.8 Constraints ..
4.2.8 Semantics ..
4 ad/2003-02-03: MOF Query / Views / Transformations

Table of Contents

......
.....44
......44
......44
......44
.......
.....45
......45
......45
......45
....
.....46
......46
......46
......46
......46
.....46
......46
......47
......47
.....47
.....47
......47
......48
......48
....
.....48
......48
......48
......48
...
.....49
......49
......49
......49
.......49
.....49
......49
......50
......50
......
.....50
......50
4.2.9 MofInstance ..43
4.2.9 Attributes..
4.2.9 Associations ..
4.2.9 Constraints ..
4.2.9 Semantics ..

4.2.10 MofFeature...44
4.2.10 Attributes..
4.2.10 Associations ..
4.2.10 Constraints ..
4.2.10 Semantics ..

4.2.11 MofLink ..45
4.2.11 Attributes..
4.2.11 Associations ..
4.2.11 Constraints ..
4.2.11 Semantics ..

4.2.12 MofFeatureOrder ..
4.2.12 Attributes..
4.2.12 Associations ..
4.2.12 Constraints ..
4.2.12 Semantics ..

4.2.13 MofLinkOrder..
4.2.13 Attributes..
4.2.13 Associations ..
4.2.13 Constraints ..
4.2.13 Semantics ..

4.2.14 Tracking ..48
4.2.14 Attributes..
4.2.14 Associations ..
4.2.14 Constraints ..
4.2.14 Semantics ..

4.2.15 Term...48
4.2.15 Attributes..
4.2.15 Associations ..
4.2.15 Constraints ..
4.2.15 Semantics ..

4.2.16 CompoundTerm...
4.2.16 Attributes..
4.2.16 Associations ..
4.2.16 Constraints ..
4.2.16 Semantics ..

4.2.17 AndTerm...50
4.2.17 Attributes..
4.2.17 Associations ..
ad/2003-02-03: MOF Query / Views / Transformations 5

Table of Contents

......50
......51
.....
.....51
......51
......51
......51
.....
.....52
......52
......52
......52
...
.....52
......52
......53
......53
.......5
.....53
......53
......54
......54
.......5
.....54
......54
......55
......55
.......
.....55
......55
......55
......55
.....
.....56
......56
......56
......56
......
.....56
......56
......56
......57
.....
4.2.17 Constraints ..
4.2.17 Semantics ..

4.2.18 OrTerm...51
4.2.18 Attributes..
4.2.18 Associations ..
4.2.18 Constraints ..
4.2.18 Semantics ..

4.2.19 NotTerm...51
4.2.19 Attributes..
4.2.19 Associations ..
4.2.19 Constraints ..
4.2.19 Semantics ..

4.2.20 IfTerm ..52
4.2.20 Attributes..
4.2.20 Associations ..
4.2.20 Constraints ..
4.2.20 Semantics ..

4.2.21 SimpleTerm..3
4.2.21 Attributes..
4.2.21 Associations ..
4.2.21 Constraints ..
4.2.21 Semantics ..

4.2.22 TrackingUse...4
4.2.22 Attributes..
4.2.22 Associations ..
4.2.22 Constraints ..
4.2.22 Semantics ..

4.2.23 PatternUse..55
4.2.23 Attributes..
4.2.23 Associations ..
4.2.23 Constraints ..
4.2.23 Semantics ..

4.2.24 Condition ...55
4.2.24 Attributes..
4.2.24 Associations ..
4.2.24 Constraints ..
4.2.24 Semantics ..

4.2.25 Expression...56
4.2.25 Attributes..
4.2.25 Associations ..
4.2.25 Constraints ..
4.2.25 Semantics ..

4.2.26 VarUse ...57
6 ad/2003-02-03: MOF Query / Views / Transformations

Table of Contents

.....57
......57
......57
......57
......5
.....57
......57
......58
......58
.......58
.....58
......58
......58
......58
......
.....58
......58
......58
......59
.......59
.....59
......59
......59
......59
.......59
.....59
......59
......60
......60
.......60
.....60
......60
......60
......60
......60
.....60
......60
......61
......61
......6
.....61
......61
......61
4.2.26 Attributes..
4.2.26 Associations ..
4.2.26 Constraints ..
4.2.26 Semantics ..

4.2.27 SimpleExpr ...7
4.2.27 Attributes..
4.2.27 Associations ..
4.2.27 Constraints ..
4.2.27 Semantics ..

4.2.28 StringConstant ...
4.2.28 Attributes..
4.2.28 Associations ..
4.2.28 Constraints ..
4.2.28 Semantics ..

4.2.29 IntConstant..58
4.2.29 Attributes..
4.2.29 Associations ..
4.2.29 Constraints ..
4.2.29 Semantics ..

4.2.30 BooleanConstant ..
4.2.30 Attributes..
4.2.30 Associations ..
4.2.30 Constraints ..
4.2.30 Semantics ..

4.2.31 EnumConstant..
4.2.31 Attributes..
4.2.31 Associations ..
4.2.31 Constraints ..
4.2.31 Semantics ..

4.2.32 CompoundExpr ..
4.2.32 Attributes..
4.2.32 Associations ..
4.2.32 Constraints ..
4.2.32 Semantics ..

4.2.33 CollectionExpr ..
4.2.33 Attributes..
4.2.33 Associations ..
4.2.33 Constraints ..
4.2.33 Semantics ..

4.2.34 FunctionExpr...1
4.2.34 Attributes..
4.2.34 Associations ..
4.2.34 Constraints ..
ad/2003-02-03: MOF Query / Views / Transformations 7

Table of Contents

......61
.......61
.....61
......62
......62
......62

.

......

...

..
4.2.34 Semantics ..
4.2.35 NamedExpr ..

4.2.35 Attributes..
4.2.35 Associations ..
4.2.35 Constraints ..
4.2.35 Semantics ..

5 Conformance ...63

5.1 Query Conformance..63

5.2 Transformation Conformance..63

5.3 View Conformance ..64

5.4 Quokka Conformance ...64

5.5 Tracking Conformance ..64

6 References..65
8 ad/2003-02-03: MOF Query / Views / Transformations

Overview

.0
l

nd

ly

n

r,
of
Overview 1
DSTC and IBM are delighted to submit this response to the ADTF’s RFP for MOF 2
Query / Views / Transformations (QVT). We believe that this RFP addresses a vita
element of the realisation of the Model-Driven Architecture (MDA).

We believe that this QVT specification offers three main benefits:

• Expressive power: the emphasis is on the declarative specification of the queries a
transformations, rather than their implementation.

• Semantically well-founded: the queries and transformations can be unambiguous
interpreted as they are based on a mathematical logic

• Fully automatable: Queries and transformations expressed in our QVT model ca
be executed by automated means.

1.1 Primary Contacts for the QVT submission
The primary contacts for this QVT submission are:

Keith Duddy and Michael Lawley
Senior Research Scientists
DSTC Pty Ltd
University of Queensland
Brisbane 4072, Australia
Phone: +61 7 3365 4310
Fax: +61 7 3365 4311
Email: pegamento@dstc.edu.au

Sridhar Iyengar
Distinguished Engineer
Application and Integration Middleware
IBM Ltd
Research Triangle Park, NC
U.S.A.
Phone: +1 919 486-1768
EMail: siyengar@us.ibm.com

1.2 Acknowledgments

The submitters wish to acknowledge the contributions of Keith Duddy, Anna Gerbe
Sridhar Iyengar, Michael Lawley, Kerry Raymond, and Jim Steel in the preparation
this specification.
ad/2003-02-03: MOF Query / Views / Transformations 1-9

Overview

RFP

sign

t be
1.3 Structure of This Submission

This Chapter contains contact points and explains how the proposal addresses the
requirements.

Chapter 2 contains the additional requirements that the submitters had for their de
of a MOF query, view and transformation language, and the explains the design
rationale for the model of that language.

Chapter 3 provides an example-driven guide to using the main concepts in the
transformation language.

Chapter 4 shows the model and contains the semantics of all of its elements.

Conformance requirements in Chapter 5 state which parts of the specification mus
implemented to be considered conformant.

Finally, Chapter 6 contains a bibliography.

1.4 Resolution of RFP Requirements

This section describes how this submission meets the mandatory and optional
requirements identified in the RFP.

1.4.1 Mandatory Requirements

The following mandatory requirements are taken from Section 6.5 in the RFP.

1. Language for
Querying Models

The model for querying MOF-compliant repositories is
a subset of the model for transforming MOF-compliant
repositories (see Chapter 4 “Transformation Language
Semantics”).

2. Language for
transformation
definitions.

The model for transformation definitions is given in
Chapter 4 “Transformation Language Semantics”

3. Abstact syntax to be
defined in MOF 2.0
metamodels.

As the MOF 2.0 RFP is still in progress, this initial
submission is based on the MOF 2.0 Core proposal
[MOF2Core]

4. Transformation
definition can be
automated

DSTC’s prototype, MOFLog automates the execution
of the transformation from information contained in the
Transformation Model in Chapter 4 “Transformation
Language Semantics”
1-10 ad/2003-02-03: MOF Query / Views / Transformations

Overview

t

o

1.4.2 Optional Requirements

The following optional requirements are taken from Section 6.6 in the RFP.

5. Tranformation
definition can create
views

Transformations and views are both defined with the
Transformation Model. The only difference between a
transformation and a view is the underlying
implementation. For a transformation, the target extent
is independent of source extent; its objects, links and
values are implemented by storing them. For a view, the
target extent remains dependent on the source extent;
its objects, links and values are computed using the
source extent. The definition of transformations and
views is the same (the specification of source and targe
models and the relationships between them).

6. Transformation
definitions shall be
declarative.

Our model for transformation definitions is declarative
and is based on F-logic [KiLaWu95].

7. Mechanisms shall
operate using MOF 2.0.

As far as possible this submission anticipates the
features of MOF 2.0, based mainly on the the MOF 2.0
Core proposal [MOF2Core]. Where possible we use
terminology and approaches that we anticipate will be
in an adopted MOF 2.0 Core. A Revised submission
will post-date the adoption of MOF 2.0, and any
inconsistencies will be corrected.

1. Transformations
can execute in two
directions.

Our Transformation Model describes declarative
relationships between the source and target models. Due t
the usability requirements identified in Section 2.2 of
Chapter 2, however, the richness of the pattern langauage
for identifying elements in the source model(s) means that
only a certain class of transformations which eschew some
of the language features may be automatically reversible.
We do not see any advantage to reducing the expressive
power of the pattern language so that all expressible
transformations are then reversible.
ad/2003-02-03: MOF Query / Views / Transformations 1-11

Overview

.

y

e

,

1.4.3 Issues to be discussed

The following issues have been taken from Section 6.7 in the RFP.

2. Traceability of
transformation
executions

Our Transformation Model can embody the identification of
traceability relationships between source and target models
The need for these relationships (none, some, all) is
determined by the specifier of the transformation. While it
is quite possible to trace all elements in a transformation,
this will result in a massive amount of traceability
information, much of which can be derived from other
traceability information in conjunction with the definition of
the transformation. These traceability relationships can be
used to generate a MOF model to represent the traceabilit
between instances in the source and target extents.

3. Reuse and
extension of generic
transformations

Our Transformation Model supports the definition of
patterns (named queries), the extension of patterns, and th
extension and overriding of transformation rules (see
Section 2.3 in Chapter 2 “Overall Design Rationale”, and
the definition of Pattern and TRule in Chapter 4
“Transformation Language Semantics”).

4. Transactional
transformation
definitions

As individual transformation rules are not required to
produce complete instances in the target extent (that is,
instances in the extent model may be created through a
number of transformations), the transformation is assumed
to be atomic.

5. Additional data as
input, and defaults

Transformations can be parameterised with additional data
but there is no support for default values for those
parameters in this specification.

6. Same source and
target

This is not permitted in this proposal.

1. CWM
transformation model

Our initial prototype was based on the CWM
transformation model, but we found that it lacked
expressive power. The Transformation Model in this
specification is the result of many refinements to that
initial CWM transformation model to meet our design
objectives and to reflect our experiences in developing
transformations. However, the extent of change is such
that most people would be unlikely to recognise the
CWM origins.
1-12 ad/2003-02-03: MOF Query / Views / Transformations

Overview

o

l

o

2. Action Semantics The UML Action Semantics model contains explicit
operations for creating, deleting and reclassifying
instances. This is not compatible with our declarative
approach to transformation which is based on pattern
matching in the source and target extents.

3. Source not well-
formed

Garbage in, garbage out. Well-formed-ness checking of
models will be addressed by responses to the MOF2.0
Facility/Object Lifecycle RFP.

Support for
preconditions.

Preconditions are supported by the expression language
of the model, and can be included in any transformation
rule or pattern definition.

Target not well-formed There is no guarantee that any given set of rules will
result in a well-formed target model. We expect well-
formed-ness checking of models will be addressed by
responses to the MOF2.0 Facility/Object Lifecycle RFP.

4. Incremental changes
to the source and
targets

Transformations are deemed to be executed atomically, s
the source and target model instances cannot change
during that process. Since transformations create target
model instances that are independent of the source mode
instances, subsequently both can be independently
changed if desired, but note that this may compromise the
traceability between the sources and targets.
Due to the declarative nature of the Transformation
Model, a model that describes an incremental change to
the source can be combined with a transformation to
produce a new model that describes the corresponding
incremental change required for the target.
For views, the target model instances will be dependent
on the source model instances, and so changes to the
source model instances should be reflected in changes t
the target model instances. How this propogation of
incremental change is performed is an issue for the
implementation of the “view” objects and is outside the
scope of this specification. Indeed, it may be significant
point for product differentiation.
ad/2003-02-03: MOF Query / Views / Transformations 1-13

Overview

e
ng

MI.

this

s

1.4.4 Evaluation Criteria

The following Evaluation Criteria are taken from Section 6.8 of the RFP.

1.5 Proof of Concept

DSTC Pty Ltd is currently engaged in a 7 year research programme into Enterpris
Distributed Systems Technology with major projects devoted to enterprise modelli
and the mapping of such models into middleware technology. DSTC Pty Ltd has
extensive experience in the standardisation, implementation and use of MOF and X
The DSTC has been developing MOF-based transformation tools since December
2000.

DSTC has developed a prototype based on the Transformation Model presented in
submission using DSTC’s dMOF product (MOF 1.3) and DSTC’s TokTok product
(HUTN 1.0) and DSTC’s MOFLog prototype (based on an F-logic interpreter with
MOFlet I/O support).

1.6 Changes to other OMG Specifications

No changes to other OMG specifications are required.

1. Support for complex
transformations

Our transformation supports the matching of arbitrary
patterns (Turing complete) over the source and target
model instances, so transformations can be as complex a
desired. However, being Turing complete is not sufficient
for practical purposes. It is also important that complex
transformations be capable of being represented as
directly and declaratively as possible. See Section 2.2.2,
page 18 for details.

2. Reusable
transformations

Our Transformation Model supports the definition of
patterns (named queries), the extension of patterns, and
the extension and overriding of transformation rules (see
Chapter 4 “Transformation Language Semantics”).

3. Extendable
transformation
definitions

Although not contained in this initial submission, our
revised submission will introduce a concept of a
transformation package, which will support inheritance,
import, etc, enabling re-use and composition of existing
transformation packages.
1-14 ad/2003-02-03: MOF Query / Views / Transformations

Overall Design Rationale

g it

such

is,

nt
t
nts
tly

t,

ts.
OverallDesignRationale 2

“Never send a human to do a machine’s job” -- Agent Smith, The Matrix

Our focus is on model-to-model transformations and not with model-to-text
transformations. The latter come into play when taking a final PSM model and usin
to produce, for example, Java code or SQL statements. We believe that there are
sufficient particular requirements and properties of a model-to-text transformation,
such as templating and boilerplating, that a specialised technology be used. One
technology is Anti-Yacc [HeRaSt02].

2.1 Relationship between Queries, Views, and Transformations

The RFP (ad/2002-04-10) solicits MOF model(s) for the following:

• mappings between models defined using MOF

• querying instances of MOF models

• creating views of MOF models

We believe that queries, views, and transformations are very closely related. That
they all operate on a set of Objects and result in a set of Objects. We see the
differences as follows:

• A query is evaluated with respect to a set of source Objects defined by an Exte
resulting in a set of variable bindings. These are then represented by an Exten
referencing a homogenous set of ordered Lists. Each ordered List thus represe
one tuple of Elements from the binding. No new Objects can be created explici
by a query. See Figure 2-1.

• A view is evaluated with respect to a set of source Objects defined by an Exten
and results in an Extent containing a set of new heterogeneous Objects whose
properties are defined relative to the View Definition and the set of source Objec
See Figure 2-2.
ad/2003-02-03: MOF Query / Views / Transformations 2-15

Overall Design Rationale

an
t of

ect
the

of the
• A transformation is evaluated with respect to a set of source Objects defined by
Extent and a target Extent, and results in population of the Target extent by a se
newly constructed heterogeneous Objects. See Figure 2-2.

Intuitively, a query selects existing things and a transformation describes how to
construct new things from existing things. In applying a transformation, one may el
to retain the link between the inputs and outputs, resulting in a view that updates as
inputs subsequently change. Alternatively, one may elect not to retain the link,
resulting in a new set of standalone objects based on an instantaneous snapshot
inputs.

Model M1

Instances I1

Query Model

Query Q1

source model

source instances

Instances I2
results

Figure 2-1 A simple query

taken from

Model M1

Instances I1

source model

source instances

Model M2

Instances I2target instances

target m
odel

Figure 2-2 A simple view/transformation

View/Trans
Model

View/Trans VT1

If View: retain links
2-16 ad/2003-02-03: MOF Query / Views / Transformations

Overall Design Rationale

is, a
te.
t it

year
re
ts of
e
be
of
ision.

ub-
ping

lues,
up

a

red

or
d to
a

Our proposal does not address the problem of transformation-based update. That
transformation that describes the new state of an extent in terms of its current sta
Until more is known about the outcome of the MOF2.0 Versioning RFP we feel tha
would be premature to propose an update semantics.

2.2 Requirements

DSTC has been researching model-based transformations as part of its current 7-
research programme, using a number of different approaches. Our experiments a
described in [GeLaRa02]. These experiments and an examination of the experimen
others, have lead us to develop a set of requirements, in addition those given in th
RFP, for a transformation language. A language satisfying these requirements will
suitable for describing transformations in a precise but readable manner; the kind
language used to describe model to model mappings needed to realise the MDA v

2.2.1 Functional Requirements

The transformation language must be able to:

• Match elements, and ad-hoc tuples of elements, by type (include instances of s
types) and precise-type (exclude instances of sub-types). For example, the map
for an EDOC-ECA ExceptionGroup is different to the mapping for its concrete
supertype, OutputGroup.

• Filter the set of matched elements or tuples based on associations, attribute va
and other context. For example, an EDOC-ECA Input contained by an InputGro
is mapped differently to an Input contained by an Activity.

• Match both collections of elements and single elements. That is, rules in the
language can be expressed in terms of a single element with some implied
quantification, rather than needing to explicitly iterate over the elements of a
collection.

• Establish associations between source and target model elements. These
associations can then be used for maintaining traceability information.

• Specify ordering constraints (of ordered multi-valued attributes or ordered
association links), either to match a certain pattern in the source or to establish
certain pattern in the target.

• Define a stable total order over anyunorderedmulti-value attributes orunordered
association links. This may seem counter-intuitive. However, if the same unorde
collection of values is involved in a number of transformation rules, it is often
important that those rules process the elements in the same order. The actual
sequence itself usually does not matter (since semantically the values are
unordered), but the sequence should be consistent across all rules. The need f
such stable orders typically arises when different mapping rules must be applie
to the “first” and/or “last” element of some collections of values, e.g. constructing
linked list representation of a set of elements requires the “next” element to be
ad/2003-02-03: MOF Query / Views / Transformations 2-17

Overall Design Rationale

t”
ally

et

in

ot
ow.

it

et-

ess
ind
pointed to for all by the “last” element, and the null pointer to be set on the “las
element of the set, even though the order in which the elements occurs is logic
irrelevant.

• Handle recursive structure with arbitrary levels of nesting. For example, the
uniqueness semantics of the source and target metamodels may differ, thus
requiring the construction of fully-qualified names with a global scope in the targ
model from locally-scoped names in the source model.

• Match and create elements at different meta-levels. For compact and clear
specification of such transformations, it is necessary to support dynamic typing
the Transformation Model rather than relying on the explicit use of the reflective
features of the MOF meta-model.

• Support both multiple source extents and multiple target extents.

2.2.2 Usability Requirements

It is desirable for readability and expressiveness concerns that:

• There is no dependency on the application order of the rules, and all rules are
applied to all source elements.

• Creation of target objects is implicit rather than explicit. This follows from the
previous requirement; if there is no explicit rule application order, then we cann
know which rule creates an object and are relieved of the burden of having to kn
Objects are simply created on demand during execution of a transformation.

• Multiple target elements are definable in a single rule.

• A single target element should be definable by multiple rules. That is, different
rules can provide property values for the same object.

• Transformation rules need only deal with collections of elements when the
semantics of the transformation require it.

• Rules are able to be grouped naturally for readability and modularity.

• Transformation patterns should be definable, thus supporting modular
transformation definitions.

• Embedding of conditions and expressions in the Transformation Model is explic
and seamless.

• Optional attributes should be easily handled.

• Transformations can be written in a variety of styles (typically source-driven, targ
driven or aspect-driven), see Section 2.3.1.

• Transformations should be composable. This submission does not directly addr
composing Transformations but the model has been designed with this goal in m
and we intend to describe composition in the final submission.
2-18 ad/2003-02-03: MOF Query / Views / Transformations

Overall Design Rationale

ped

put,

us

les,

by
of

xtent
be

re
his

ly,
rtain

e

ents
eral

s
hip,
g to
a

n,
sses

rce
2.3 Our Overall Approach

To satisfy the requirements of the RFP and those identified above, we have develo
a transformation language that allows for the declarative specification of
transformations without regard for rule application order. This language has been
successfully prototyped based on a modified F-Logic interpreter [KiLaWu95].

A declarative transformation describes what the result should be in terms of the in
but does not prescribe how to go about constructing the result. However, like Horn
clauses in logic programming, instances of a transformation language should be a
declarative specification, and also have an equivalent procedural interpretation, th
allowing the specification to be executed.

A transformation in our language consists of the following major concepts: pattern
definitions, transformation rules, and tracking relationships.

Pattern definitions are used to label common structures that may be repeated
throughout a transformation.

A pattern definition has a name, a set of parameter variables, a set of local variab
and a term. Parameter variables can also be thought of as formal by-reference
parameters. Pattern definitions are used to name a query or pattern-match defined
the term. The result of applying a pattern definition via a pattern use is a collection
bindings for the pattern definition’s parameter variables.

Transformation rules are used to describe the things that should exist in a target e
based on the things that are matched in a source extent. Transformation rules can
extended, allowing for modular and incremental description of transformations. Mo
powerfully, a transformation rule may also supersede another transformation rule. T
allows for general case rules to be written, and then special cases dealt with via
superseding rules. For example, one might write a naive transformation rule initial
then supersede it with a more sophisticated rule that can only be applied under ce
circumstances. Superseding is not only ideal for rule optimization and rule
parameterization, but also enhances reusability since general purpose rules can b
tailored after-the-fact without having to modify them directly.

Tracking relationships are used to associate a target element with the source elem
that lead to its creation. Since a tracking relationship is generally established by sev
separate rules, they allow other rules to match elements based on the tracking
relationship independently of which rules were applied or how a target element wa
created. This allows one set of rules to define what constitutes a particular relations
while another set depends only on the existence of the relationship without needin
know how it was defined. This kind of rule decoupling is essential for rule reuse vi
extending and superseding to be useful.

A very common transformation definition kind is shown in Figure 2-3. In this patter
two classes and an association between them are transformed into two different cla
with a different association between them, but the transformation is essentially
structure-preserving. This means that if A1 and B1 are associated by C in the sou
ad/2003-02-03: MOF Query / Views / Transformations 2-19

Overall Design Rationale

e

itten

arge

ting

gh-
sal
is

ttern

g

and
,

ing
extent, then A1’s corresponding (functionally dependent) element X1 will be
associated by Z with B1’s corresponding (functionally dependent) element Y1 in th
target extent.

Therefore, the transformation between association C and association Z can be wr
most conveniently in terms of the functional dependencies established by the
transformations between classes A and X, and between classes B and Y.

2.3.1 Styles of Transformation

Our experiences have shown that there are 3 fairly common styles to structuring a l
or complex transformation, reflecting the nature of the transformation:

• source-driven, in which each transformation rule is a simple pattern (often selec
a single instance of a class or association link). The matched element(s) are
transformed to some larger set of target elements. This style is often used in hi
level to low-level transformations (e.g. compilations) and tends to favour a traver
style of transformation specification. This works well when the source instance
tree-like, but is less suited to graph-like sources.

• target-driven, in which each transformation rule is a complex pattern of source
elements (involving some highly constrained selection of various classes and
association links). The matched elements are transformed to a simple target pa
(often consisting of a single element). This style is often used for reverse-
engineering (low-level to high-level) or for performing optimizations (e.g. replacin
a large set of very similar elements with a common generic element).

• aspect-driven, in which the transformation rule is not structured around objects
links in either the source or target, but more typically around semantic concepts
e.g. transforming all imperial measurements to metric ones, replacing one nam
system with another.

Class YClass X

Model-XYZ

Association Z

Class BClass A

Model-ABC

Association C

Figure 2-3 A common transformation definition kind.
2-20 ad/2003-02-03: MOF Query / Views / Transformations

Overall Design Rationale

an
ress

.

del,

sed in
se
ze

d
ation
itrary

ze,
l)
nd
eze

s.
ibes
ant
s of
on
the
e

w in

sk,

ol
Aspect-driven transformations are a major reason why we favour implicit (rather th
explicit) creation of target objects, as aspect-driven transformation rules rarely add
entire objects, and thus it is extremely difficult to determine which of several
transformation rules (which may or may not apply to any given object) should then
have responsibility for creating the target object. Typically the target object is only
required if any one of the transformation rules can be applied, but no target object
should be created if none of the rules can be applied. This is extremely difficult to
express if explicit creation is used.

2.4 Example of Transformation

Figure 2-4 illustrates an example of using transformation to convert between the
EDOC Enterprise Collaboration Architecture (ECA) model [EDOC] and a model of
workflows used to represent designs in DSTC’s workflow product Breeze [Breeze]

At the top of Figure 2-4, there are 3 models: the EDOC ECA model, the Breeze mo
and the Transformation model. The ECA model includes the concepts needed to
express some aspects of enterprise systems, such as business processes, expres
terms of activities and their inputs and outputs and the data flows that connect tho
inputs and outputs. The ECA model is a technology-independent model. The Bree
model describes the workflows that can be directly implemented using the Breeze
workflow product, expressed in terms of tasks, conditional tasks (shown as “If”) an
edges that connect tasks. The Breeze model is technology-specific. The Transform
Model includes the concepts needed to describe the transformations between arb
MOF models, and is described more fully in Chapter 4 “Transformation Language
Semantics”.

Below these models in Figure 2-4 are examples of the instances of the ECA, Bree
and Transformation models. The ECA specification (an instance of the ECA mode
shows an activity with two possible groups of outputs, one of which initiates a seco
activity. The Breeze specification (an instance of the Breeze model) illustrates a Bre
workflow equivalent to the example ECA specification, showing two tasks, two
conditional tasks (shown as “If”) and three edges that control the initiations of task
The ECA2Breeze Transformation (an instance of the Transformation Model) descr
how to convert from the source ECA model to the target Breeze model. It is import
to note that the transformation is described in terms of the models, and not in term
the instances (the ECA and Breeze specifications). The ECA2Breeze transformati
consists of rules, each of which comprises some selection of input elements from
source ECA model and some “selection” of output elements from the target Breez
model and how the source and target elements are related.

The specifics of the relationship between source and target are too detailed to sho
Figure 2-4, but are intended to capture the following relationships:

• Each ECA activity corresponds to a Breeze task.

• Each ECA output group corresponds to a Breeze edge to a Breeze condition ta
which is used to enable the appropriate subsequent task.

• Each ECA input group corresponds to a Breeze edge used to receive the contr
signals to initiate the ECA activity’s task.
ad/2003-02-03: MOF Query / Views / Transformations 2-21

Overall Design Rationale

t to

gine
off
er
Having described how to transform the ECA model into the Breeze model as the
ECA2Breeze Transformation, the ECA2Breeze Transformation rules are then inpu
a transformation engine, which will populate the target extent based on the source
extent according to the transformation rules. Other inputs to the transformation en
may include user-customisation choices (e.g. object granularity, time/space trade-
preferences, preferred optimisations). These inputs may be model elements or oth
extents (containing instances of some arbitrary parameterization model).

ECA Model Breeze Model

ECA specification

Activity Activity Task

TaskIf

If

Edge

Edge

Edgethen

then

else

Breeze specificationECA2Breeze
Transformation

Activity Task

Output Group Edge & If

Input Group Edge

instance instance instance

source
target

rules

Transformation

input output

ECA2Breeze Trackings

output

was source

was target

Figure 2-4 Example of transforming EDOC ECA to Breeze

Engine

model
model

MOF Meta-Model

instance

instance

instance

Transformation Model
2-22 ad/2003-02-03: MOF Query / Views / Transformations

Overall Design Rationale

F

s

CL

ng
e

re
it
we
is
r the
d be

nd
F

2.4.1 Relationship between Transformation Model and EMOF and CMO

The Transformation Model may be used to transform instances of both CMOF and
EMOF models.

2.4.2 Relationship between Transformation Model and OCL

The Transformation Model includes Term and Expression components which allow
the specification of expressions including MOF classes and their properties and
associations, as well as arithmetic and logical operators and primitive literals. This
overlaps significantly with the OCL metamodel, and we envisage that an adopted O
2.0 metamodel may be significantly reused to express the abstract syntax of
transformation rules. In addition, we expect the OCL 2.0 specification to reuse the
primitive type models and well as other packages from UML 2.0 Infrastructure, givi
a common semantic basis for these concepts when used in OCL, and reused in th
Transformation Model.

The concrete syntax used in the prototypes developed at DSTC is significantly mo
compact than OCL, with clearly understandable implicit quantification we consider
better suited to the dynamic typing requirements given in Section 2.2.1. However,
have not proposed any specific concrete syntax for the Transformation Model at th
stage, and we envisage that the OCL syntax may be extended to include syntax fo
rule and pattern model elements that use the Term model as their basis. We woul
in favour of a number of concrete syntaxes, including graphical syntaxes, being
available for the specification of transformations. Of course next generation XMI a
HUTN syntaxes will be automatically available for use due to the model being MO
compliant.
ad/2003-02-03: MOF Query / Views / Transformations 2-23

Overall Design Rationale
2-24 ad/2003-02-03: MOF Query / Views / Transformations

Using the Transformation Model

n

from

he
Tag
Using theTransformationModel 3
“You have to see it for yourself” -- Morpheus, The Matrix

This chapter provides a guide to the use of some of the major concepts in the
Transformation Model. These concepts are illustrated using a simple transformatio
from a UML model to a Java model. The models are presented first, followed by
examples of the use of transformations, transformation rules, and other concepts
the Transformation Model. The complete example transformation is reproduced in
Section 3.12, page 32.

3.1 Example UML, Java, and Tag models

The illustrative example transformation used in this chapter is taken from a simple
mapping from the UML metamodel to the Java metamodel. The relevant parts of t
respective models are shown in Figure 3-1 and Figure 3-2. We also make use of a
model, to parameterise the transformation. The Tag model is shown in Figure 3-3.

-name : String

UMLModelElement

UMLClassifier UMLFeature UMLParameter

UMLClass UMLInterface UMLAttribute UMLOperation +behaviouralFeature

0..1

+parameter

*
+owner

0..1

+feature

*

Figure 3-1 UML Model used in the example transformation.
ad/2003-02-03: MOF Query / Views / Transformations 3-25

Using the Transformation Model

e

on

in
ich
3.2 Notation

The notation used in this chapter is not normative, and is used only to illustrate th
modelling concepts.

3.3 Transformation

The topmost element of the containment tree in the Transformation Model is the
Transformation. For our example transformation, we declare a single Transformati
named ”uml2java”, that will contain all of the rules, patterns, and trackings used to
express our mapping from UML to Java. The transformation declaration is shown
Figure 3-4. “Source”, “Target” and “Tags” are Vars representing the extents over wh

+name : String

JavaPackage

+comment : String
+isAbstract : Boolean
+isFinal : Boolean
+isPublic : Boolean
+name : String

JavaClass

+isFinal : Boolean
+isPublic : Boolean
+name : String

JavaInterface

+isFinal : Boolean
+isStatic : Boolean
+name : String

JavaField

+isFinal : Boolean
+isStatic : Boolean
+name : String

JavaMethod

+isFinal : Boolean

JavaParameter

+owner

0..1

+javaClass

*

+owner0..1

+javaInterface

*

+owner

1

+field

*

+owner

0..1
+method*

+owner0..1

+constructor

*

+owner

0..1
+method *

+owner

1

+arg

*

Figure 3-2 Java Model used in the example transformation.

+name : String
+type : String
+value : String

Tag

Figure 3-3 Tag model used in the example transformation.
3-26 ad/2003-02-03: MOF Query / Views / Transformations

Using the Transformation Model

”,
ent

onsist
the

ts in

g is

get
of
sed
s’

ce
” is
te

to
of
our Transformation will apply. In our example, the default source extent is “Source
“Target” is the default target extent and “Tags” represents an additional source ext
that we will use to parameterise the transformation. The figure also shows the first
transformation rule of transformation, contained within the Transformation block.

Transformation uml2java(Source, Target, Tags) {

TRule umlClassifierToJavaClass(X,Y) {
X:UMLClassifier[name -> N]
->
Y:JavaClass[name -> N] and
track(Y, java_class_from_uml_classifier, X)

}
...

}

Figure 3-4 A Transformation declaration containing a TRule

3.4 Transformation Rules

A transformation rule (TRule) represents the basic unit of mapping between an
arrangement of source elements and an arrangement of target elements. TRules c
of a Term identifying the sources of the rule and a set of SimpleTerms that identify
targets of the rule.

TRules are used in our example transformation to express mappings from concep
the UML model to concepts in the Java model. For example, we map each UML
Classifier to a Java Class with the same name as the UML Classifier. This mappin
expressed using the TRule “umlClassifierToJavaClass”, shown in Figure 3-4.

3.5 MofTerms

A MofTerm allows us to make statements about elements from the source and tar
extents. In our example we use MofInstances to make statements about the type
objects from the source and target extents that are involved in the mapping expres
by the TRule, and MofFeatures to make statements about the values of the object
features.

In our TRule “umlClassifierToJavaClass” shown in Figure 3-4, we use a MofInstan
to match UMLClassifiers from the source extent, and establish that the variable “X
of type UMLClassifier. A MofFeature is used to bind the value of the “name” attribu
of the UMLClassifier to the variable “N”. In the target of the TRule, we use a
MofInstance to establish that variable “Y” is of type JavaClass, and a MofFeature
assert that the value of the “name” attribute for that JavaClass should be the value
the variable “N”.
ad/2003-02-03: MOF Query / Views / Transformations 3-27

Using the Transformation Model

nt
a

the
the

ed.

the

e
ind
of

Y”

rget
ise
ach
urce
3.6 Trackings and Correspondences

A correspondenceis a statement of functional dependency between a target eleme
and a set of source elements that is characterised in the Transformation Model by
named Tracking. We use TrackingUses within TRules to establish and query
correspondences between source and target elements.

A TrackingUse in the target of a TRule will assert a correspondence between the
source and target elements that are bound to the variables provided, whereas a
TrackingUse in the source of a Trule will act as a query on all correspondence
assertions, and will bind the variables to the results of the query.

In the example we use a TrackingUse named “java_class_from_uml_classifier” in
target of TRule “umlClassifierToJavaClass” to establish a correspondence between
UMLClassifiers matched by the rule and the Java Classes to which they are mapp
We establish the correspondence so that we may look up which Java Class was
generated from each UML Classifier within other TRules.

We make use of the correspondence established in “umlClassifierToJavaClass” in
TRule “umlAttributeToJavaField”, shown in Figure 3-5. The TRule
“umlAttributeToJavaField” maps UMLAttributes owned by each UMLClassifier to
Java fields belonging to the Java Class mapped from the UMLClassifier. The
TrackingUse “java_class_from_uml_classifier” is used to query the correspondenc
between UMLClassifiers in the source extent, and Java Classes in the target, to b
“JC” to the Java Class that was mapped from the UMLClassifier that is the owner
the matched UMLAttribute “X”. The variable “JC” is then used in the MofFeature in
the target of the TRule, to provide a value for the “owner” feature of the JavaField “
that is mapped from the UMLAttribute “X”.

Tracking java_class_from_uml_classifier

TRule umlAttributeToJavaField {
track(JC, java_class_from_uml_classifier, UC) and
X:UMLAttribute[owner -> UC]
->
Y:JavaField[owner -> JC] and
track(Y, field_from_attr, X)

}

Figure 3-5 Using TrackingUse to query correspondences

3.7 Pattern Definitions and Pattern Uses

A PatternDefn provides a named pattern that can be used from within source or ta
clauses of a TRule. Pattern definitions are generally used to simplify and modular
TRule construction, as patterns may then be used by multiple TRules, instead of e
TRule duplicating the Terms used to make statements about elements from the so
or target extents that are common to TRules across a Transformation.
3-28 ad/2003-02-03: MOF Query / Views / Transformations

Using the Transformation Model

hat
e

to

at the
. the
at the
to.
ia

the

d by

g
a

the
For our example mapping, we realise that we will probably declare many TRules t
refer to a UMLClassifier and its name, and also to a JavaClass and its name, so w
create PatternDefns, as shown in Figure 3-6 to represent these commonly used
MofFeatures. The TRule “umlClassifierToJavaClass” can now be rewritten to refer
these PatternDefns, using a PatternUse.

PatternDefn umlClassifierAndName(X,N) {
X:UMLClassifier[name -> N]

}

PatternDefn javaClassAndName(X,N) {
X:JavaClass [name -> N]

}

TRule umlClassifierToJavaClass(X,Y) {
javaClassifierAndName(X,N)
->
javaClassAndName(Y,N) and
track(Y, java_class_from_uml_classifier, X)

}

Figure 3-6 Example of PatternDefn and PatternUse

3.8 Transformation Rule Extending and Superseding

TRules can extend or supersede other TRules. The extends association means th
extender rule only applies to those elements the extended rule also applies to, i.e
source patterns of both rules must match. The supersedes association indicates th
superseded rule applies only to those elements the superseder rules do not apply
Superseding and extending rules are further linked by associating their variables v
the Var::extends and Var::supersedes relationships respectively. This means that
elements bound to a Var in the extended rule will be bound to the extending Var in
extending rule.

In our example transformation, a UMLClassifier maps to a Java Class, as expresse
TRule “umlClassifierToJavaClass”. However, when the UMLClassifier is a
UMLInterface, we need to map to a Java Interface rather than a Class.

We use TRule superseding to override the general “umlClassifierToJavaClass” rule
with a rule specific to UMLInterfaces; “umlInterfaceToJavaInterface”, as shown in
Figure 3-7. The “X” and “Y” variables of “umlInterfaceToJavaInterface” supersede
those of the same name in “umlClassifierToJavaClass”.

TRule extending is used to extend the rule for UMLClassifiers to make the mappin
more specific for UMLClasses, so that a constructor method is created on the Jav
Class in the target extent. TRule “umlClassToJavaClass” extends
“umlClassifierToJavaClass” as shown in Figure 3-7. As variables “X” and “Y” are
extended from the variables of “umlClassifierToJavaClass”, it is not necessary to
specify their type again in the MofFeatures used in the TRule to bind the name of
UMLClass to the name of the constructor method in the Java Class.
ad/2003-02-03: MOF Query / Views / Transformations 3-29

Using the Transformation Model

chies

ble)

ith
cts

ces
sing

red
er
ders
e

Typically, extension and superseding are used in the presence of inheritance hierar
in the source or target models.

3.9 Tracking Hierarchies

Trackings can be arranged in hierarchies. Tracking subtyping means that when a
correspondence is recorded in the child tracking, it will also be present (and querya
in the parent tracking. Tracking subtyping is often (but not always) useful in
combination with transformation rule extending and superseding, or when dealing w
transforming to or from inheritance hierarchies, where it is useful to talk about obje
polymorphically.

The example in Figure 3-7 shows the “java_intf_from_uml_intf” tracking subtyping
the “java_class_from_uml_classifer” tracking, so that we may query corresponden
between UMLClassifiers and corresponding objects in the target extent generally, u
“java_class_from_uml”, or more specifically, only query correspondences between
UMLInterfaces and Java Interfaces, using “java_intf_from_uml_intf”.

Tracking java_intf_from_uml_intf isa
java_class_from_uml_classifier

TRule umlInterfaceToJavaInterface(X,Y)
supercedes umlClassifierToJavaClass(X,Y) {
X:UMLInterface[name -> N]
->
Y:JavaInterface [name -> N] and
track(Y, java_intf_from_uml_intf, X)

}

TRule umlClasstoJavaClass(X,Y)
extends umlClassifierToJavaClass(X,Y) {
X [name -> N]
->
M:JavaMethod [name -> N] and
Y[constructor -> M]

}

Figure 3-7 Example of TRule extending and superseding, and Tracking subtyping.

3.10 MofTerm Ordering

It is often necessary to query and assert the order of elements involved in an orde
Property or Association. This is done using the MofFeatureOrder and MofLinkOrd
elements, respectively. Using this element allows the modeler to establish partial or
between pairs of elements in the collection, and to thus define a total order over th
entire collection of elements.

In our example transformation, we wish to maintain the order of parameters of
UMLOperations in the corresponding JavaMethod. Figure 3-8 presents TRules for
transforming the ordered set of UML Parameters of each UMLOperation into an
3-30 ad/2003-02-03: MOF Query / Views / Transformations

Using the Transformation Model

rule
y
e
thod

red
All
urce
We
ting

es
ags
ly
”,
ordered set of Java Parameters of the corresponding JavaMethod. The first rule
establishes the existence of the corresponding Java Parameters, and the second
ensures that they are placed in the correct order within the Method. This is done b
asserting that a pair of UML Parameters in a given order in the UML Operation (th
source order term) have corresponding elements in the same order in the Java Me
(the target order term).

TRule umlParameterToJavaParameter {
X:UMLParameter[name -> N]
->
Y:JavaParameter[name -> N] and
track(Y, java_param_from_uml_param, X)

}

TRule parameterOrdering {
order(Z[parameter -> X1], Z[parameter -> X2]) and
track(Y1, java_param_from_uml_param, X1) and
track(Y2, java_param_from_uml_param, X2)
->
order(M[arg -> Y1], M[arg -> Y2])

}

Figure 3-8 Example of MofFeatureOrder

3.11 Extents

When we declared the “uml2java” transformation, as shown in Figure 3-4, we decla
Vars “Source”, “Target” and “Tags” representing the extents of the transformation.
of the TRules so far have used “Source” as the default extent of the terms in the so
of each TRule and “Target” as the extent of the terms in the target of each TRule.
can express transformation rules between elements from other extents by associa
the extent with terms in the source or target of a TRule.

In our example transformation, see Figure 3-9, we wish to comment all JavaClass
resulting from the transformation with a standard copyright statement. We use the T
model as the source for this copyright information, using the ‘@’ notation to explicit
specify the extent for the MofTerm that binds the value of the Tag to the variable “C
which is then used to provide the value for the comment of each JavaClass.

TRule copyrightToJavaClass {
X:Tag[name -> ’Copyright’,

type -> ’UMLClassifier’,
value -> C]@Tags and

track(Y, java_class_from_uml_classifier, Z)
->
Y[comment -> C]

}

Figure 3-9 Working with a non-default extent
ad/2003-02-03: MOF Query / Views / Transformations 3-31

Using the Transformation Model
3.12 Full example

Assembling the example fragments, we arrive at Figure 3-10, representing the
transformation from a simple UML model to a Java model.

Transformation uml2java(Source, Target, Tags) {
Tracking java_class_from_uml_classifier

Tracking java_intf_from_uml_intf isa
java_class_from_uml_classifier

PatternDefn umlClassifierAndName(X,N) {
X:UMLClassifier[name -> N]

}

PatternDefn javaClassAndName(X,N) {
X:JavaClass[name -> N]

}

TRule umlClassifierToJavaClass(X,Y) {
javaClassifierAndName(X,N)
->
javaClassAndName(Y,N) and
track(Y, java_class_from_uml_classifier, X)

}
TRule umlAttributeToJavaField {

track(JC, java_class_from_uml_classifier, UC) and
X:UMLAttribute[owner -> UC]
->
Y:JavaField[owner -> JC] and
track(Y, field_from_attr, X)

}

TRule umlInterfaceToJavaInterface(X,Y)
supercedes umlClassifierToJavaClass(X,Y) {
X:UMLInterface[name -> N]
->
Y:JavaInterface[name -> N] and
track(Y, java_intf_from_uml_intf, X)

}

TRule umlClasstoJavaClass(X,Y)
extends umlClassifierToJavaClass(X,Y) {
X[name -> N]
->
M:JavaMethod[name -> N] and
Y[constructor -> M]

}

3-32 ad/2003-02-03: MOF Query / Views / Transformations

Using the Transformation Model
TRule umlParameterToJavaParameter {
X:UMLParameter[name -> N]
->
Y:JavaParameter[name -> N] and
track(Y, java_param_from_uml_param, X)

}

TRule parameterOrdering {
order(Z[parameter -> X1], Z[parameter -> X2]) and
track(Y1, java_param_from_uml_param, X1) and
track(Y2, java_param_from_uml_param, X2)
->
order(M[arg -> Y1], M[arg -> Y2])

}

TRule copyrightToJavaClass {
X:Tag[type -> ’UMLClass’, value -> C]@Tags and
track(Y, java_class_from_uml_classifier, Z)
->
Y[comment -> C]

}

}

Figure 3-10 Complete transformation example
ad/2003-02-03: MOF Query / Views / Transformations 3-33

Using the Transformation Model
3-34 ad/2003-02-03: MOF Query / Views / Transformations

Transformation Language Semantics

the

at
TransformationLanguageSemantics 4

4.1 Introduction

This Chapter introduces the abstract syntax for the MOF query, view and
transformation language. This language is described by a MOF meta-model.

4.2 The Model

The full model is shown in Figure 4-1 on page 36 without derived associations for
sake of clarity. In the presentation of the model below, we have followed the
presentation format used in the MOF2 submission.

4.2.1 VarScope

VarScope is an abstract base type for the language constructs that may declare
variables (Vars) that their contained VarUses can reference. A Var may only be
referenced by a VarUse that is contained (directly or indirectly) by the VarScope th
contains the Var.

Attributes

name: string [0..1] The optional name of this VarScope.

Associations

var: Var [0..*] {composite, ordered}

The set of owned variables of the scope. This is a
set of names that can be referenced by VarUses
multiple times within the scope. The opposite
association is Var::scope.

Constraints

Semantics

4.2.2 Var

Var is the declaration of a variable within a VarScope.
ad/2003-02-03: MOF Query / Views / Transformations 4-35

Transformation Language Semantics
T
ra

ns
fo

rm
at

io
n

T
R

ul
e

-t
ra

ns
fo

rm
at

io
n

1

-t
ru

le *

-s
up

er
ce

de
d

*

-s
up

er
ce

de
r *

-e
xt

en
de

d

*

-e
xt

en
de

r
*

P
at

te
rn

D
ef

n
-s

co
pe

1

-p
at

te
rn

D
ef

n

*

na
m

e
: S

tr
in

g

T
ra

ck
in

g

-n
am

e
: S

tr
in

g

V
ar

S
co

pe

-n
am

e
: S

tr
in

g

V
ar

-s
co

pe

1

-v
ar *

-t
ra

ns
fo

rm
at

io
n1

-t
ra

ck
in

g

*
T

er
m

-e
xt

en
de

d
*

-e
xt

en
de

r
*

-s
up

er
ce

de
d

*

-s
up

er
ce

de
r

*

E
xp

re
ss

io
n

V
ar

U
se

-v
ar

1

C
om

po
un

dT
er

m

A
nd

T
er

m
O

rT
er

m
IfT

er
m

M
of

T
er

m

-c
ol

le
ct

 :
bo

ol
ea

n

M
of

F
ea

tu
re

P
at

te
rn

U
se

-d
ef

n
1

0.
.1

-a
rg *

-T
ra

ck
in

gU
se

S
im

pl
eT

er
m

-r
ep

re
se

nt
at

io
n

: S
tr

in
g

S
im

pl
eE

xp
r

B
oo

le
an

C
on

st
an

t
E

nu
m

C
on

st
an

t
In

tC
on

st
an

t
S

tr
in

gC
on

st
an

t

-e
xp

r

0.
.1

-a
rg

* -n
am

e
: S

tr
in

g

N
am

ed
E

xp
r

-o
pe

ra
to

r
: S

tr
in

g

F
un

ct
io

nE
xp

r

C
om

po
un

dE
xp

r
-c

om
po

un
dT

er
m

0.
.1

-t
er

m
1.

.*

-t
ru

le
0.

.1

-s
rc

0.
.1

-t
ru

le
0.

.1

-t
gt *

-is
E

xa
ct

ly
 :

bo
ol

ea
n

M
of

In
st

an
ce

M
of

Li
nk

M
of

Li
nk

O
rd

er
M

of
F

ea
tu

re
O

rd
er

C
on

di
tio

n

-in
st

an
ce

1
-f

ea
tu

re
*

-p
ar

en
t

0.
.1

-c
hi

ld

*

-t
ra

ck
in

g1

*

-c
on

te
xt

0.
.1

N
ot

T
er

m

-le
ss

er 1
-g

re
at

er 1

-le
ss

er

1 -g
re

at
er

1

Q
ue

ry

-p
at

te
rn

D
ef

n
0.

.1

-b
od

y 1

-u
ni

qu
e

: b
oo

le
an

-o
rd

er
ed

 :
bo

ol
ea

n

C
ol

le
ct

io
nE

xp
r

P
at

te
rn

S
co

pe

-q
ue

ry

0.
.1

-t
er

m 1

F
ig

u
re

4
-1

C
o

m
p

le
te

T
ra

n
sf

o
rm

a
tio

n
M

o
d

e
l

4-36 ad/2003-02-03: MOF Query / Views / Transformations

Transformation Language Semantics

d

r

ue

ue

ent

re
at is
.

Attributes

name: string [1] The name of the variable.

Associations

scope: VarScope [1] The scope which owns this variable. The opposite
association is VarScope::var.

extended: Var [0..*] The extended Vars are the variables in the extende
rules which are bound to the same value as this
variable during transformation execution. The
opposite association is Var::extender.

extender: Var [0..*] The extender Vars are the variables in the extende
rules which are bound to the same value as this
variable during transformation execution. The
opposite association is Var:extended.

superseded: Var [0..*] The superseded Vars are the variables in the
superseded rules which are bound to the same val
as this variable during transformation execution.
The opposite association is Var::superseder.

superseder: Var [0..*] The superseder Vars are the variables in the
superseder rules which are bound to the same val
as this variable during transformation execution.
The opposite association is Var::superseded.

Constraints

The extends relationship can only exist between two variable declarations in differ
TRule scopes which also have an extender/extended relationship.

The supersedes relationship can only exist between two variable declarations in
different TRules which are also in a superseder/superseded relationship.

Semantics

4.2.3 PatternScope

PatternScope is an abstract base type for the language constructs that may decla
patterns (PatternDefns). A PatternDefn may only be referenced by a PatternUse th
contained (directly or indirectly) by the PatternScope that contains the PatternDefn
PatternScope inherits from VarScope.

Attributes

name: string [0..1] (from VarScope)
ad/2003-02-03: MOF Query / Views / Transformations 4-37

Transformation Language Semantics

n be
atch
tion

re

d

Associations

var: Var [0..*] {composite, ordered} (from VarScope)

patternDefn: PatternDefn [0..*] {composite}

The set of owned pattern definitions. The opposite
association is PatternDefn::scope.

Constraints

Semantics

4.2.4 PatternDefn

A PatternDefn is used to name and parameterise a Term in the language which ca
reused in queries, transformation rules and other patterns, via a PatternUse, to m
values in an extent. The Vars owned by the PatternDefn via the parameter associa
act as parameters to the PatternDefn, any other Vars owned by the PatternDefn a
effectively local variables. PatternDefn inherits from VarScope.

Attributes

name: string [0..1] (from VarScope)

Associations

var: Var [0..*] {composite, ordered} (from VarScope)

parameter: Var [0..*] {composite, ordered} (subsets VarScope::var)

The Vars that act as parameters to the pattern, an
for whom bindings will be supplied/provided when
referenced by a PatternUse.

body: Term [1] {composite} The Term which is the definition of the pattern. The
opposite association is Term::patternDefn.

scope: PatternScope [1] The pattern scope that contains this pattern
definition. The opposite association is
PatternScope::patternDefn.
4-38 ad/2003-02-03: MOF Query / Views / Transformations

Transformation Language Semantics

urce
eters
ery

or

ts,
Constraints

Semantics

4.2.5 Query

A Query is used to name and parameterise a Term which matches values in the so
extents. The Vars owned by the Query via the parameter association act as param
to the Query, any other Vars owned by the Query are effectively local variables. Qu
inherits from PatternScope (and hence from VarScope).

Attributes

name: string [0..1] (from VarScope)

Associations

var: Var [0..*] {composite, ordered} (from VarScope)

patternDefn: PatternDefn [0..*] {composite} (from PatternScope)

parameter: Var [0..*] (subsets VarScope::var)

The Vars that act as parameters to the query, and f
whom bindings will be supplied/provided when the
query is invoked.

term: Term [1] {composite} The Term which is the definition of the query. The
opposite association is Term::query.

Constraints

Semantics

4.2.6 Transformation

A Transformation consists of variables (Vars) representing source and target exten
transformation rules (TRules), pattern definitions (PatternDefns), and tracking
relationships. It is used to match elements in the source extent(s), and establish
equivalences with elements in the target extent(s). Transformation inherits from
PatternScope (and hence from VarScope).

Attributes

name: string [0..1] (from VarScope)
ad/2003-02-03: MOF Query / Views / Transformations 4-39

Transformation Language Semantics

e

t

tion
The
d the

rce

s of

he

ents
odel

is
ed).
Associations

var: Var [0..*] {composite, ordered} (from VarScope)

patternDefn: PatternDefn [0..*] {composite} (from PatternScope)

trule: TRule [0..*] {composite} The set of owned transformation rules. The opposit
association is TRule::transformation.

tracking: Tracking [0..*] {composite}

The set of owned relationships used to track the
functional dependencies between a target elemen
and a set of source elements. The opposite
association is Tracking::transformation.

Constraints

Semantics

When used to perform a transformation, every TRule contained by the transforma
is evaluated to establish the equivalences between the source and target extents.
Tracking dependencies are used to identify target objects that must be created, an
equivalences are used to determine their types and property values.

4.2.7 TRule

TRule is a transformation rule and a concrete subtype of VarScope. It owns a sou
Term,src, that is “matched” in the context of the source extents supplied to its
containing transformation and, if the match is successful, produces a set of binding
model elements to the Vars owned by this TRule. It also owns a set of target
SimpleTerms (MofTerms, TrackingUses, and PatternUses),tgt, describing the model
elements and their properties that should result from the application of the
transformation.

TRules mayextendother rules to refine the pattern to be matched (a conjunction of t
src of this TRule with that of theextended), and add to the model elements to be
created in the target. Commonly an extending TRule adds extra target model elem
(or defines extra properties of target model elements) for a subset of the source m
elements matched by the extended rule.

TRules maysupersedeother rules within a transformation. The superseder rule
effectively restricts the set of matched elements that the (original) superseded rule
applied to (a negated conjunction of the src of this TRule with that of the supersed
Commonly a superseding TRule is used to refine the semantics of the superseded
TRule, dealing with special cases not covered by the original rule.
4-40 ad/2003-02-03: MOF Query / Views / Transformations

Transformation Language Semantics

ents
s the

e

f
lt

in

e

The essential difference between extending and superseding is that extending augm
the new rule’s src with the old, extended, rule’s src whereas superseding augment
old rule’s src with a negation of the new, superseding, rule’s src thuschangingthe
behaviour of the old rule by reducing the set of elements it applies to.

Attributes

name: string [0..1] (from VarScope)

Associations

var: Var [0..*] {composite, ordered} (from VarScope)

The set of Vars introduced by this rule. The
opposite association is Var::scope.

src: Term [0..1] {composite} Used in the evaluation process to match model
elements in the source extent. The src term will
usually contain VarUses which cause variables to b
bound to values in the source extent. The opposite
association is Term::trule.

tgt: SimpleTerm [0..*] {composite}

A set of SimpleTerms which define the structure o
the target model elements that must exist as a resu
of the transformation. This expression will usually
contain VarUses which allow variables bound to
values in the source extent to populate the values
the target extent. The opposite association is
SimpleTerm:: trule

extended: TRule [0..*] The TRules that this rule extends. The opposite
association is TRule::extender.

extender: TRule [0..*] The TRules that extend this rule. The opposite
association is TRule::extended.

superseded: TRule [0..*] The TRules that this rule supersedes. The opposit
association is TRule::superseder.

superseder: TRule [0..*] The TRules that supersede this rule. The opposite
association is TRule::superseded.

transformation: Transformation The transformation that contains this rule. The
opposite association is Transformation::trule.
ad/2003-02-03: MOF Query / Views / Transformations 4-41

Transformation Language Semantics

on,

ed

by

m

, or

ion

ule’s
ships.

ms

en

src
opy

sedes
ming
Constraints

In order to bind variables to values during evaluation of the TRules in a transformati
we require that they are sufficiently constrained. Informally, this means that every
variable defined by a TRule be referenced by at least one VarUse that occurs in a
context that constrains the variable to be bound to one (or more) of a finite set of
values. For example, the variable “N” in the following src term isnot sufficiently
constrained:

P:person and not P[name -> N]

More formally, every Var owned by the TRule must occurpositivelyin the src Term, or
be referenced by the target VarUse of a tgt TrackingUse. A Var is said to occur
positively in a term if:

• the term is an AndTerm and it occurs positively in any of the Terms directly own
by the AndTerm, or

• the term is an OrTerm and it occurs positively in all of the terms directly owned
the OrTerm, or

• the term is an IfTerm and it occurs positively in the ifTerm or in both the thenTer
and the elseTerm, or

• the term is a MofTerm and it is referenced by a VarUse owned by the MofTerm

• the term is a TrackingUse and it is referenced by its tgt VarUse, or

• the term is a PatternUse and the corresponding Var in the PatternDefn occurs
positively in the PatternDefn’s term, or

• the term is a Condition and it is referenced by a VarUse in the term’s arg Express
that constrains the variable’s possible bindings to a finite set of values.

These conditions capture the notion ofrange-restriction.

Semantics

To evaluate this rule’s src Term, a match term is constructed that represents this r
src Term augmented by Terms accounting for the extends and supersedes relation

Loosely, the match term consists of this rule’s src Term “anded” with the match ter
of each of the extended Terms and “anded” with the negation of each of the match
terms of each of the superseder Terms. However, this definition is not sufficient wh
this Term both extends and supersedes another Term since it introduces a cyclic
dependency.

More precisely, to construct the match term one must first construct the extended
term. The extended src term is an AndTerm containing this rule’s src term and (a c
of) each of the extended’s extended src terms. The match term is an AndTerm
containing this rule’s extended src term and, for each superseder rule, a NotTerm
containing (a copy of) the superseder’s extended src term. The extends and super
relationships between Vars are used to correlate the Vars and VarUses when perfor
the Term copies to construct the extended src terms and match terms.
4-42 ad/2003-02-03: MOF Query / Views / Transformations

Transformation Language Semantics

t.

y.

efn,
4.2.8 MofTerm

MofTerm is an abstract base class for Terms that match MOF model elements.
MofTerm inherits from SimpleTerm (and hence from Term).

Associations

context: Var [0..1] (from Term) A MofTerm must be evaluated in the context of a
particular extent, whose value is held by the Var.

arg: Expression [0..*] {composite, ordered} (from SimpleTerm)

The arguments to the evaluation of the MofTerm.
The opposite association is
Expression::simpleTerm.

trule: TRule [0..1] (from Term & SimpleTerm)

The rule that contains this MofTerm (if any). The
opposite associations are TRule::src and TRule::tg

query: Query [0..1] (from Term) The query that contains this MofTerm (if any). The
opposite association is Query::term.

patternDefn: PatternDefn [0..1] (from Term)

The pattern definition that contains this MofTerm (if
any). The opposite association is PatternDefn::bod

compoundTerm: CompoundTerm [0..1] (from Term)

The compoundterm that contains this MofTerm (if
any). The opposite association is
CompoundTerm::term.

Constraints

If context has no value then there must be a CompoundTerm that contains this
MofTerm that has a value for context.

Every MofTerm must be contained by exactly one of a TRule, a Query, a PatternD
or a CompoundTerm.

Semantics

4.2.9 MofInstance

A MofInstance term is used to match instances of the specified type in an extent.
MofInstance inherits from MofTerm (and hence from SimpleTerm and Term).
ad/2003-02-03: MOF Query / Views / Transformations 4-43

Transformation Language Semantics

e

s

her

hat

m

Attributes

isExactly: boolean If true, then instances of subclasses of the type ar
not matched. If false, then instances of subclasses
are matched.

Associations

context: Var [0..1] (from Term)

trule: TRule [0..1] (from Term & SimpleTerm)

arg: Expression [0..*] {composite, ordered (from SimpleTerm)

query: Query [0..1] (from Term)

patternDefn: PatternDefn [0..1] (from Term)

compoundTerm: CompoundTerm [0..1] (from Term)

feature: MofFeature [0..*] {composite}

The (partial) set of features of the MOF Class that
must also be matched. The opposite association i
MofFeature::instance.

typeName: Expression [1] (subsets SimpleTerm::arg)

Specifies the name of the MOF Class.

instance: VarUse [1] (subsets SimpleTerm::arg)

Specifies the VarUse that references the Var to
which the matched instances will be bound.

Constraints

There must be 2 args for a MofInstance, one of which is the typeName and the ot
the instance variable.

If context has no value then there must be a Term that contains this MofInstance t
has a value for context.

Semantics

4.2.10 MofFeature

A MofFeature term is used to match the value(s) of a feature from the containing
MofInstance’s type. MofFeature inherits from MofTerm (and hence from SimpleTer
and Term).
4-44 ad/2003-02-03: MOF Query / Views / Transformations

Transformation Language Semantics

e
f

e

e

Attributes

collect: boolean If true, then the Var referenced by the value VarUs
is bound to a collection containing all the values o
the feature for the matched MofInstance. If false,
then the Var referenced by the value VarUse is
bound to each value of the feature for the matched
MofInstance.

Associations

context: Var [0..1] (from Term)

trule: TRule [0..1] (from Term & SimpleTerm)

arg: Expression [0..*] {composite, ordered} (from SimpleTerm)

query: Query [0..1] (from Term)

patternDefn: PatternDefn [0..1] (from Term)

compoundTerm: CompoundTerm [0..1] (from Term)

instance: MofInstance [1] The MofInstance that contains this MofFeature. Th
opposite association is MofInstance::feature.

featureName: Expression [1] (subsets SimpleTerm::arg)

Specifies the name of the feature.

value: VarUse [1] (subsets SimpleTerm::arg)

Specifies the VarUse that references the Var to
which the matched instances will be bound.

Constraints

A MofFeature must have 2 args, one of which is the featureName and the other th
value variable.

Semantics

4.2.11 MofLink

A MofLink term is used to match the members of an Association. MofLink inherits
from MofTerm (and hence from SimpleTerm and Term).
ad/2003-02-03: MOF Query / Views / Transformations 4-45

Transformation Language Semantics

are

e
ot
This
are

s

Attributes

Associations

context: Var [0..1] (from Term)

trule: TRule [0..1] (from Term & SimpleTerm)

arg: Expression [0..*] {composite, ordered} (from SimpleTerm)

query: Query [0..1] (from Term)

patternDefn: PatternDefn [0..1] (from Term)

compoundTerm: CompoundTerm [0..1] (from Term)

typeName: Expression [1] (subsets SimpleTerm::arg)

Specifies the name of the Association.

member: VarUse [2] {ordered} (subsets SimpleTerm::arg)

Specifies the VarUses that reference the Vars to
which the two ends of the matched links will be
bound.

Constraints

Every MofLink must have 3 args, one of which is the typeName and the other two
VarUses for the objects linked by the association.

Semantics

4.2.12 MofFeatureOrder

A MofFeatureOrder is used to determine pair-wise ordering of feature values. If th
feature is ordered, then MofFeatureOrder matches according to this order. If it is n
ordered, then an implementation must provide a total order that remains constant.
is important so that the Features have a stable, albeit arbitrary, ordering when they
matched by several different TRules in a Transformation. MofFeatureOrder inherit
from MofTerm (and hence from SimpleTerm and Term).

Attributes

Associations

context: Var [0..1] (from Term)

trule: TRule [0..1] (from Term & SimpleTerm)
4-46 ad/2003-02-03: MOF Query / Views / Transformations

Transformation Language Semantics

is
en
ant
arg: Expression [0..*] {composite, ordered} (from SimpleTerm)

query: Query [0..1] (from Term)

patternDefn: PatternDefn [0..1] (from Term)

compoundTerm: CompoundTerm [0..1] (from Term)

lesser: MofFeature [1] The MofFeature which comes before the greater
MofFeature.

greater: MofFeature [1] The MofFeature which comes after the lesser
MofFeature.

Constraints

The lesser and greater MofFeatures must be owned by the same MofInstance.

Semantics

4.2.13 MofLinkOrder

A MofLinkOrder is used to determine pair-wise ordering of links. If the Association
ordered, then MofLinkOrder matches according to this order. If it is not ordered, th
an implementation must provide a total order that remains constant. This is import
so that the links have a stable, albeit arbitrary, ordering when they are matched by
several different TRules in a Transformation. MofLinkOrder inherits from MofTerm
(and hence from SimpleTerm and Term).

Attributes

Associations

context: Var [0..1] (from Term)

trule: TRule [0..1] (from Term & SimpleTerm)

arg: Expression [0..*] {composite, ordered} (from SimpleTerm)

query: Query [0..1] (from Term)

patternDefn: PatternDefn [0..1] (from Term)

compoundTerm: CompoundTerm [0..1] (from Term)

lesser: MofLink [1] The MofLink which comes before the greater
MofLink.

greater: MofLink [1] The MofLink which comes after the lesser
MofLink.
ad/2003-02-03: MOF Query / Views / Transformations 4-47

Transformation Language Semantics

ent
e

in
e

age.
ed

and
Constraints

The lesser and greater MofLinks must belong to the same association.

Semantics

4.2.14 Tracking

A Tracking is used to name a functional dependency between a target model elem
and a set of source model elements. A TrackingUse is used to define and query th
elements for which the functional dependency holds.

Any tuple of elements that belongs to a Tracking (as determined by TrackingUses
the target of a TRule) also belongs to its parent’s Tracking. This is transitive up th
hierarchy.

Attributes

name: string The name of the Tracking.

Associations

transformation: Transformation [1]

The transformation that contains this tracking. The
opposite association is Transformation::tracking.

parent: Tracking [0..1] Any functional dependency that holds for this
Tracking also holds for its parent tracking. The
opposite association is Tracking::child.

child: Tracking [0..*] Any functional dependency that holds for a child
tracking also holds for this tracking. The opposite
association is Tracking::parent.

Constraints

Semantics

4.2.15 Term

Term is the abstract base class for terms in the pattern matching expression langu
A term is evaluated in the context of a set of variable bindings for the variables defin
by the containing TRule or PatternDefn. A Term either fails to match, or succeeds
results in a, possibly updated, set of bindings.
4-48 ad/2003-02-03: MOF Query / Views / Transformations

Transformation Language Semantics

or a
Attributes

Associations

context: Var [0..1] A reference to a Var contained by the
Transformation that is bound to the extent in which
the matching of this term will be evaluated.

trule: TRule [0..1] The rule that contains this term. The opposite
association is TRule::src.

query: Query [0..1] The query that contains this term. The opposite
association is Query::term.

patternDefn: PatternDefn [0..1] The pattern that contains this term. The opposite
association is PatternDefn::body.

compoundTerm: CompoundTerm [0..1]

The compound term that contains this term. The
opposite association is CompoundTerm::term.

Constraints

Every Term must be contained by exactly one of a TRule, a Query, a PatternDefn,
CompoundTerm.

Semantics

4.2.16 CompoundTerm

CompoundTerm is a abstract base class for terms that compose other terms.
CompoundTerm inherits from Term.

Attributes

Associations

term: Term [1..*] {composite, ordered}

The terms which are composed by this
CompoundTerm. The opposite association is
Term::compoundTerm.

context: Var [0..1] (from Term)

trule: TRule [0..1] (from Term)

query: Query [0..1] (from Term)
ad/2003-02-03: MOF Query / Views / Transformations 4-49

Transformation Language Semantics

en
nd

e

patternDefn: PatternDefn [0..1] (from Term)

compoundTerm: CompoundTerm [0..1] (from Term)

Constraints

Semantics

4.2.17 AndTerm

A Term whose result depends on the successful evaluation of each of the terms
referenced by the multi-valuedterm property. The set of variable bindings produced
must be non-empty and is the intersection of the variable bindings of each of the
contained terms. If the intersection is empty or any of the contained terms fails, th
the AndTerm fails, otherwise it succeeds. AndTerm inherits from CompoundTerm (a
hence from Term).

Attributes

Associations

term: Term [1..*] {composite, ordered} (from CompoundTerm)

The Terms referred to by the term aggregation are
the operands to the conjunction represented by th
AndTerm.

context: Var [0..1] (from Term)

trule: TRule [0..1] (from Term)

query: Query [0..1] (from Term)

patternDefn: PatternDefn [0..1] (from Term)

compoundTerm: CompoundTerm [0..1] (from Term)

Constraints

An AndTerm must contain at least 2 terms.
4-50 ad/2003-02-03: MOF Query / Views / Transformations

Transformation Language Semantics

s
e of

ave
Semantics

4.2.18 OrTerm

A Term whose result depends on the successful evaluation of any of the terms
referenced by the multi-valuedtermproperty. The set of variable bindings produced i
the union of the variable bindings of each of the successful contained terms. If non
the contained terms succeeds then the OrTerm fails. OrTerm inherits from
CompoundTerm (and hence from Term).

Attributes

Associations

term: Term [1..*] {composite, ordered} (from CompoundTerm)

The Terms referred to by the term aggregation are
the operands to the disjunction represented by the
OrTerm.

context: Var [0..1] (from Term)

trule: TRule [0..1] (from Term)

query: Query [0..1] (from Term)

patternDefn: PatternDefn [0..1] (from Term)

compoundTerm: CompoundTerm [0..1] (from Term)

Constraints

An OrTerm must contain at least 2 terms.

Semantics

4.2.19 NotTerm

A Term whose result is the negation of the contained Term. All Vars from the
containing VarScope that are referenced by VarUses in the contained term must h
bindings available. This condition may affect the evaluation order of a containing
AndTerm. NotTerm inherits from CompoundTerm (and hence from Term).
ad/2003-02-03: MOF Query / Views / Transformations 4-51

Transformation Language Semantics

e
ins

r
ted.
Attributes

Associations

term: Term [1] (subsets CompoundTerm::term)

The term to be negated.

context: Var [0..1] (from Term)

trule: TRule [0..1] (from Term)

query: Query [0..1] (from Term)

patternDefn: PatternDefn [0..1] (from Term)

compoundTerm: CompoundTerm [0..1] (from Term)

Constraints

A NotTerm must contain exactly 1 term.

Semantics

4.2.20 IfTerm

An IfTerm is semantically equivalent to an OrTerm containing two AndTerms wher
one AndTerm contains the ifTerm and the thenTerm, and the other AndTerm conta
the negation of the ifTerm and the thenTerm. IfTerm inherits from CompoundTerm
(and hence from Term).

Note, there may be variable bindings for which the ifTerm succeeds and others fo
which if fails in which case both the thenTerm and the elseTerm need to be evalua

Attributes

Associations

term: Term [1..*] {composite, ordered} (from CompoundTerm)

The Terms referred to by the term aggregation are
the operands to the “if”.

context: Var [0..1] (from Term)

trule: TRule [0..1] (from Term)

query: Query [0..1] (from Term)

patternDefn: PatternDefn [0..1] (from Term)
4-52 ad/2003-02-03: MOF Query / Views / Transformations

Transformation Language Semantics

.

.

e.

nd

from

l

n

compoundTerm: CompoundTerm [0..1] (from Term)

ifTerm: Term [1] (subsets term from CompoundTerm)

The term representing the condition we are testing

thenTerm: Term [1] (subsets term from CompoundTerm)

The term that we match when the condition is true

elseTerm: Term [1] (subsets term from CompoundTerm)

The term that we match when the condition is fals

Constraints

An IfTerm must contain 3 terms, one of which is the ifTerm, another the thenTerm a
another the elseTerm.

Semantics

4.2.21 SimpleTerm

SimpleTerm is an abstract base class for Terms denoting MOF model elements
TrackingUses, PatternUses, and boolean valued Expressions. SimpleTerm inherits
Term.

Attributes

Associations

arg: Expression [0..*] {composite, ordered}

An ordered set of expressions that providing litera
values or variable references to populate the MOF
elements, TrackingUses, PatternUses and
Conditions of its subtypes. The opposite associatio
is Expression::simpleTerm.

context: Var [0..1] (from Term)

trule: TRule [0..1] (from Term)

query: Query [0..1] (from Term)

patternDefn: PatternDefn [0..1] (from Term)

compoundTerm: CompoundTerm [0..1] (from Term)
ad/2003-02-03: MOF Query / Views / Transformations 4-53

Transformation Language Semantics

y
d

y
ust

s

Constraints

Semantics

4.2.22 TrackingUse

A TrackingUse term occurring in the tgt of a TRule defines a functional dependenc
between the element bound to thetgt referenced variable and the set of elements boun
to thesrc referenced variables. This effectively establishes the identity of model
elements that need to be created in the target extent(s) by the transformation.

A TrackingUse term occurring in the body of a PatternDefn or the src of a TRule
represents a query/match against the tuples that satisfy the functional dependenc
defined by the referenced Tracking. Note that to match against a Tracking, one m
first evaluate all TRules that populate the Tracking.

Tracking inherits from SimpleTerm (and hence from Term).

Attributes

Associations

context: Var [0..1] (from Term) Not used for TrackingUse.

arg: Expression [0..*] {composite, ordered} (from SimpleTerm)

trule: TRule [0..1] (from Term & SimpleTerm) .

query: Query [0..1] (from Term)

patternDefn: PatternDefn [0..1] (from Term)

compoundTerm: CompoundTerm [0..1] (from Term)

tgt: VarUse [1] (subsets arg from SimpleTerm)

The target model element that functionally depend
on the src model elements.

src: VarUse [0..*] {ordered} (subsets arg from SimpleTerm)

The source model elements that the tgt model
element functionally depends on.

tracking: Tracking [1] The named functional dependency to
query/populate.
4-54 ad/2003-02-03: MOF Query / Views / Transformations

Transformation Language Semantics

by

or
dge

5”
.

Constraints

Semantics

4.2.23 PatternUse

A PatternUse term results in the evaluation of (a copy of) the body term of the
reference PatternDefn. The values of each of the orderedarg Expressions are used as
bindings for the correspondingly ordered (copies of) the parameter Vars contained
the PatternDefn.

Note, a PatternUse contained by a PatternDefn may reference that PatternDefn. F
example, to define the notion of a path as consisting of an edge or, recursively, an e
connected to a path.

Attributes

Associations

context: Var [0..1] (from Term) Not used for PatternUse.

arg: Expression [0..*] {composite, ordered} (from SimpleTerm)

The arguments to be supplied to the PatternDefn’s
parameter Vars.

trule: TRule [0..1] (from Term & SimpleTerm) .

query: Query [0..1] (from Term)

patternDefn: PatternDefn [0..1] (from Term)

compoundTerm: CompoundTerm [0..1] (from Term)

defn: PatternDefn [1] The PatternDefn to be evaluated in this context.

Constraints

Semantics

4.2.24 Condition

A Condition evaluates its boolean-valued Expression argument. For example, “X >
or “member(Y, YList)”. Condition inherits from SimpleTerm (and hence from Term)
ad/2003-02-03: MOF Query / Views / Transformations 4-55

Transformation Language Semantics
Attributes

Associations

context: Var [0..1] (from Term) Not used for Condition.

arg: Expression [1] {composite} (subsets SimpleTerm::arg)

The argument to be evaluated by this Condition.

trule: TRule [0..1] (from Term & SimpleTerm) .

query: Query [0..1] (from Term)

patternDefn: PatternDefn [0..1] (from Term)

compoundTerm: CompoundTerm [0..1] (from Term)

Constraints

The arg Expression must be boolean valued.

Semantics

4.2.25 Expression

An argument to a SimpleTerm or CompoundExpr which provides values for the
evaluation of the containing SimpleTerm or CompoundExpr.

Attributes

Associations

simpleTerm: SimpleTerm [0..1] The simple term that may contain this Expression.
The opposite association is SimpleTerm::arg.

expr: CompoundExpr [0..1] The compound expression that may contain this
Expression. The opposite association is
CompoundExpr::arg.

Constraints

An Expression must be contained by either a SimpleTerm or a CompoundExpr.
4-56 ad/2003-02-03: MOF Query / Views / Transformations

Transformation Language Semantics

he
nd

uce
Semantics

4.2.26 VarUse

A VarUse term is the use of a variable in an expression. The value of a VarUse is
stored in a binding in the evaluation context. This value may be determined from t
result of matching a MofTerm in an extent, or by evaluating certain FunctionExprs a
NamedExprs. For example, an equality FunctionExpr between a SimpleExpr and a
VarUse of an unbound Var will result in a binding of the Var to the value of the
SimpleExpr whereas testing that the variable is less than 5 will not be able to prod
a binding and must be delayed until a binding is available as a result of evaluating
some other Term with a reference to the variable.

Attributes

Associations

simpleTerm: SimpleTerm [0..1] (from Expression)

expr: CompoundExpr [0..1] (from Expression)

var: Var [1] The declaration of the variable used.

Constraints

Semantics

4.2.27 SimpleExpr

A term providing a literal string, number, boolean or enumerator label.

Attributes

representation: string [1] The string representation of the value of the
concrete subtypes of SimpleExpr.

Associations

simpleTerm: SimpleTerm [0..1] (from Expression)

expr: CompoundExpr [0..1] (from Expression)
ad/2003-02-03: MOF Query / Views / Transformations 4-57

Transformation Language Semantics
Constraints

Semantics

4.2.28 StringConstant

A literal string value.

Attributes

representation: string [1] (from SimpleExpr)

The value of the StringConstant.

Associations

simpleTerm: SimpleTerm [0..1] (from Expression)

expr: CompoundExpr [0..1] (from Expression)

Constraints

Semantics

4.2.29 IntConstant

A literal integer value.

Attributes

representation: string [1] (from SimpleExpr)

The string representation of the IntConstant.

Associations

simpleTerm: SimpleTerm [0..1] (from Expression)

expr: CompoundExpr [0..1] (from Expression)

Constraints

Representation must be as per ANSI C.
4-58 ad/2003-02-03: MOF Query / Views / Transformations

Transformation Language Semantics
Semantics

4.2.30 BooleanConstant

A literal boolean value.

Attributes

representation: string [1] (from SimpleExpr)

The string representation of the BooleanConstant.

Associations

simpleTerm: SimpleTerm [0..1] (from Expression)

expr: CompoundExpr [0..1] (from Expression)

Constraints

May contain the strings “true” and “false” only.

Semantics

4.2.31 EnumConstant

A literal enum label value.

Attributes

representation: string [1] (from SimpleExpr)

The string representation of the Enum label.

Associations

simpleTerm: SimpleTerm [0..1] (from Expression)

expr: CompoundExpr [0..1] (from Expression)
ad/2003-02-03: MOF Query / Views / Transformations 4-59

Transformation Language Semantics

ed
Constraints

Semantics

4.2.32 CompoundExpr

A structured literal containing sub-expressions.

Attributes

Associations

simpleTerm: SimpleTerm [0..1] (from Expression)

expr: CompoundExpr [0..1] (from Expression)

arg: Expression [0..*] {composite, ordered}

An ordered set of expressions via thearg
association which are argument expressions
providing literal values or variables for values to
populate the subtypes of CompoundExpr. The
opposite association is Expression::expr.

Constraints

Semantics

4.2.33 CollectionExpr

A list of values contained by the arg property that make up a set, bag, list or order
set, depending on the values of theuniqueandorderedproperties.

Attributes

unique: boolean True iff the literal collection defined here is to be a
set.

ordered: boolean True iff the literal collection defined here is to be a
ordered.

Associations

simpleTerm: SimpleTerm [0..1] (from Expression)

expr: CompoundExpr [0..1] (from Expression)
4-60 ad/2003-02-03: MOF Query / Views / Transformations

Transformation Language Semantics

in

pes:

ed
arg: Expression [0..*] {composite, ordered} (from CompoundExpr)

Constraints

If uniqueis true then there may not be any two elements that have identical values
the arg list.

Semantics

4.2.34 FunctionExpr

Represents the invocation of the operation named byoperator. The arguments to this
FunctionExpr will be used as arguments to the named operation. If any of the
arguments to this expression are VarUses, then there must be bindings for the
referenced Vars in the evaluation context.

Attributes

operator: string The name of the operation to be invoked.

Associations

simpleTerm: SimpleTerm [0..1] (from Expression)

expr: CompoundExpr [0..1] (from Expression)

arg: Expression [0..*] {composite, ordered} (from CompoundExpr)

Constraints

The value of operator must be one of the usual set of operations on the available ty
string, int, boolean, enum, and collection. For example, “>“, “>=”, “==”, “!=”, “+”,
“*”, “union”, “intersection”, “and”, etc.

Semantics

4.2.35 NamedExpr

Represents the invocation of the library function in the transformation engine nam
name. The arguments to this NamedExpr will be used as arguments to the named
library function.

Attributes

name: string The name of the library function to be invoked.
ad/2003-02-03: MOF Query / Views / Transformations 4-61

Transformation Language Semantics
Associations

simpleTerm: SimpleTerm [0..1] (from Expression)

expr: CompoundExpr [0..1] (from Expression)

arg: Expression [0..*] {composite, ordered} (from CompoundExpr)

Constraints

Semantics
4-62 ad/2003-02-03: MOF Query / Views / Transformations

Conformance

t

uery.
nce

tent

to
nce
is a
Conformance 5
There are four alternative levels of conformance defined by this specification:

• Query Conformance

• Transformation Conformance

• View Conformance

• Quokka Conformance

plus an additional optional conformance point (applicable to all of the above excep
Query):

• Tracking Conformance

5.1 Query Conformance

Query conformance enables elements in source extents to be matched against a Q
Queries include the use of patterns but not tracking relationships. Query conforma
requires support for the implementation of the following classes:

• Query

• Var

• PatternDefn

• concrete subtypes of Term (except TrackingUse)

• concrete subtypes of Expression.

5.2 Transformation Conformance

Transformation conformance enables source extents to be transformed into persis
target extents. Transformation includes the use of patterns and the use of tracking
within the transformation, but there is no requirement for the tracking relationships
be made persistent after the transformation is complete. Transformation conforma
requires the implementation of all concrete classes. Transformation conformance
superset of Query Conformance.
ad/2003-02-03: MOF Query / Views / Transformations 5-63

Conformance

tents
ents.
he
e

ling
uires

l
ce
5.3 View Conformance

View conformance enables source extents to be transformed into derived target ex
which require changes in the source extents to be reflected in the derived target ext
Again, patterns and tracking relationships are included in View conformance, but t
tracking relationships need not be made persistent. View conformance requires th
implementation of all concrete classes, and is a superset of Query conformance.

5.4 Quokka Conformance

Quokka conformance is a superset of Transformation and View conformance, enab
the creation of both persistent and derived target extents. Quokka conformance req
implementation of all concrete classes.

5.5 Tracking Conformance

Transformation conformance, View conformance and Quokka conformance can al
have an additional conformance point: tracking conformance. Tracking conforman
enables the persistent storage of tracking relationships established during
transformation.
5-64 ad/2003-02-03: MOF Query / Views / Transformations

References

g
os

ion:
.

y

e

-

,

References 6

[Breeze] DSTC, “Breeze: workflow with ease”,
www.dstc.edu.au/Research/Projects/Pegamento/Breeze/breeze.html

[CWM] Object Management Group, “Common Warehouse Metamodel”, 2001,
OMG formal/2001-10-01.

[dMOF] DSTC, “dMOF: an OMG Meta-Object Facility Implementation”,
www.dstc.edu.au/Products/CORBA/MOF/

[EDOC] Object Management Group, “UML Profile for Enterprise Distributed
Object Computing (EDOC) Specification”, 2002, OMG ptc/02-02-05.

[HeRaSt02] D. Hearnden, K. Raymond and J. Steel, Anti-Yacc: MOF-to-text. In
Proceedings, Sixth International Enterprise Distributed Object Computin
(EDOC 2002) Conference, pages 200-211. IEEE Computing Society, L
Alamitos, CA, USA 2002.

[HUTN] Object Management Group, “Human-Usable Textual Notation”, 2002,
OMG ptc/02-12-01.

[GeLaRa02] A. Gerber, M. Lawley, K. Raymond, J. Steel, and A. Wood. Transformat
The missing link of MDA. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G
Rozemberg, editors, Proceedings of ICGT 02, volume 2505 of Lecture
Notes in Computer Science, pages 90 -105. Springer Verlag, 2002.

[JMI] Sun Microsystems, “JavaTM Metadata Interface (JMI) Specification”,
2002, http://java.sun.com/products/jmi/

[KiLaWu95] M. Kifer, G. Lausen, and J.Wu. Logical Foundations of Object-Oriented
and Frame-Based Languages. Journal of the ACM, 42(4):741 843, Jul
1995.

[MDA] Object Management Group, “Model Driven Architecture: The Architectur
Of Choice for a Changing World”, 2001, www.omg.org/mda/

[MOF] Object Management Group, “Meta-Object Facility (MOFTM)”, 2002,
OMG formal/2002-04-03.

[MOF2] Object Management Group, “MOF 2.0 Core RFP”, 2001, OMG ad/01-11
14

[MOF2Core] Adaptive, et. al, “Meta Object Facility (MOF) 2.0 Core Proposal”, 2002
OMG ad/02-12-10
ad/2003-02-03: MOF Query / Views / Transformations 6-65

References

-

”,

tion
[OCL2] Object Management Group, “UML 2.0 OCL RFP”, 2000, OMG ad/00-09
03.

[QVT] Object Management Group, “MOF 2.0 Query/View/Transformation RFP
2002, OMG ad/02-04-10.

[TokTok] DSTC, “TokTok - The Language Generator”, www.dstc.edu.au/TokTok

[UML] Object Management Group, “Unified Modeling Language (UML)”, 2001,
OMG formal/2001-09-67.

[UML2] Object Management Group, “UML 2.0 Infrastructure RFP”, 2000, OMG
ad/00-09-01.

[XMI] Object Management Group, “XML-Based Model Interchange (XMI)
Specification”, 2002, OMG formal/2002-01-01.

[XSLT99] XSL Transformations (XSLT) Version 1.0, W3C Proposed Recommenda
8 October 1999.http://www.w3.org/TR/1999/PR-xslt-19991008.
6-66 ad/2003-02-03: MOF Query / Views / Transformations

	MOF Query / Views / Transformations
	Initial Submission
	Overview 1
	1.1 Primary Contacts for the QVT submission
	1.2 Acknowledgments
	1.3 Structure of This Submission
	1.4 Resolution of RFP Requirements
	1.4.1 Mandatory Requirements
	1.4.2 Optional Requirements
	1.4.3 Issues to be discussed
	1.4.4 Evaluation Criteria

	1.5 Proof of Concept
	1.6 Changes to other OMG Specifications

	Overall Design Rationale 2
	2.1 Relationship between Queries, Views, and Transformations
	Figure�2�1 A simple query
	Figure�2�2 A simple view/transformation

	2.2 Requirements
	2.2.1 Functional Requirements
	2.2.2 Usability Requirements

	2.3 Our Overall Approach
	Figure�2�3 A common transformation definition kind.
	2.3.1 Styles of Transformation

	2.4 Example of Transformation
	Figure�2�4 Example of transforming EDOC ECA to Breeze
	2.4.1 Relationship between Transformation Model and EMOF and CMOF
	2.4.2 Relationship between Transformation Model and OCL

	Using the Transformation Model 3
	3.1 Example UML, Java, and Tag models
	Figure�3�1 UML Model used in the example transformation.
	Figure�3�2 Java Model used in the example transformation.
	Figure�3�3 Tag model used in the example transformation.

	3.2 Notation
	3.3 Transformation
	Transformation uml2java(Source, Target, Tags) {
	TRule umlClassifierToJavaClass(X,Y) {
	X:UMLClassifier[name -> N]
	->
	Y:JavaClass[name -> N] and
	track(Y, java_class_from_uml_classifier, X)
	}
	...
	}
	Figure�3�4 A Transformation declaration containing a TRule

	3.4 Transformation Rules
	3.5 MofTerms
	3.6 Trackings and Correspondences
	Tracking java_class_from_uml_classifier
	TRule umlAttributeToJavaField {
	track(JC, java_class_from_uml_classifier, UC) and
	X:UMLAttribute[owner -> UC]
	->
	Y:JavaField[owner -> JC] and
	track(Y, field_from_attr, X)
	}
	Figure�3�5 Using TrackingUse to query correspondences

	3.7 Pattern Definitions and Pattern Uses
	PatternDefn umlClassifierAndName(X,N) {
	X:UMLClassifier[name -> N]
	}
	PatternDefn javaClassAndName(X,N) {
	X:JavaClass [name -> N]
	}
	TRule umlClassifierToJavaClass(X,Y) {
	javaClassifierAndName(X,N)
	->
	javaClassAndName(Y,N) and
	track(Y, java_class_from_uml_classifier, X)
	}
	Figure�3�6 Example of PatternDefn and PatternUse

	3.8 Transformation Rule Extending and Superseding
	3.9 Tracking Hierarchies
	Tracking java_intf_from_uml_intf isa java_class_from_uml_classifier
	TRule umlInterfaceToJavaInterface(X,Y)
	supercedes umlClassifierToJavaClass(X,Y) {
	X:UMLInterface[name -> N]
	->
	Y:JavaInterface [name -> N] and
	track(Y, java_intf_from_uml_intf, X)
	}
	TRule umlClasstoJavaClass(X,Y)
	extends umlClassifierToJavaClass(X,Y) {
	X [name -> N]
	->
	M:JavaMethod [name -> N] and
	Y[constructor -> M]
	}
	Figure�3�7 Example of TRule extending and superseding, and Tracking subtyping.

	3.10 MofTerm Ordering
	TRule umlParameterToJavaParameter {
	X:UMLParameter[name -> N]
	->
	Y:JavaParameter[name -> N] and
	track(Y, java_param_from_uml_param, X)
	}
	TRule parameterOrdering {
	order(Z[parameter -> X1], Z[parameter -> X2]) and
	track(Y1, java_param_from_uml_param, X1) and
	track(Y2, java_param_from_uml_param, X2)
	->
	order(M[arg -> Y1], M[arg -> Y2])
	}
	Figure�3�8 Example of MofFeatureOrder

	3.11 Extents
	TRule copyrightToJavaClass {
	X:Tag[name -> ’Copyright’,
	type -> ’UMLClassifier’,
	value -> C]@Tags and
	track(Y, java_class_from_uml_classifier, Z)
	->
	Y[comment -> C]
	}
	Figure�3�9 Working with a non-default extent

	3.12 Full example
	Transformation uml2java(Source, Target, Tags) {
	Tracking java_class_from_uml_classifier
	Tracking java_intf_from_uml_intf isa java_class_from_uml_classifier
	PatternDefn umlClassifierAndName(X,N) {
	X:UMLClassifier[name -> N]
	}
	PatternDefn javaClassAndName(X,N) {
	X:JavaClass[name -> N]
	}
	TRule umlClassifierToJavaClass(X,Y) {
	javaClassifierAndName(X,N)
	->
	javaClassAndName(Y,N) and
	track(Y, java_class_from_uml_classifier, X)
	}
	TRule umlAttributeToJavaField {
	track(JC, java_class_from_uml_classifier, UC) and
	X:UMLAttribute[owner -> UC]
	->
	Y:JavaField[owner -> JC] and
	track(Y, field_from_attr, X)
	}
	TRule umlInterfaceToJavaInterface(X,Y)
	supercedes umlClassifierToJavaClass(X,Y) {
	X:UMLInterface[name -> N]
	->
	Y:JavaInterface[name -> N] and
	track(Y, java_intf_from_uml_intf, X)
	}
	TRule umlClasstoJavaClass(X,Y)
	extends umlClassifierToJavaClass(X,Y) {
	X[name -> N]
	->
	M:JavaMethod[name -> N] and
	Y[constructor -> M]
	}
	TRule umlParameterToJavaParameter {
	X:UMLParameter[name -> N]
	->
	Y:JavaParameter[name -> N] and
	track(Y, java_param_from_uml_param, X)
	}
	TRule parameterOrdering {
	order(Z[parameter -> X1], Z[parameter -> X2]) and
	track(Y1, java_param_from_uml_param, X1) and
	track(Y2, java_param_from_uml_param, X2)
	->
	order(M[arg -> Y1], M[arg -> Y2])
	}
	TRule copyrightToJavaClass {
	X:Tag[type -> ’UMLClass’, value -> C]@Tags and
	track(Y, java_class_from_uml_classifier, Z)
	->
	Y[comment -> C]
	}
	}
	Figure�3�10 Complete transformation example

	Transformation Language Semantics 4
	4.1 Introduction
	4.2 The Model
	Figure�4�1 Complete Transformation Model
	4.2.1 VarScope
	Attributes
	name: string [0..1]

	Associations
	var: Var [0..*] {composite, ordered}

	Constraints
	Semantics

	4.2.2 Var
	Attributes
	name: string [1]

	Associations
	scope: VarScope [1]
	extended: Var [0..*]
	extender: Var [0..*]
	superseded: Var [0..*]
	superseder: Var [0..*]

	Constraints
	Semantics

	4.2.3 PatternScope
	Attributes
	name: string [0..1] (from VarScope)

	Associations
	var: Var [0..*] {composite, ordered} (from VarScope)
	patternDefn: PatternDefn [0..*] {composite}

	Constraints
	Semantics

	4.2.4 PatternDefn
	Attributes
	name: string [0..1] (from VarScope)

	Associations
	var: Var [0..*] {composite, ordered} (from VarScope)
	parameter: Var [0..*] {composite, ordered} (subsets VarScope::var)
	body: Term [1] {composite}
	scope: PatternScope [1]

	Constraints
	Semantics

	4.2.5 Query
	Attributes
	name: string [0..1] (from VarScope)

	Associations
	var: Var [0..*] {composite, ordered} (from VarScope)
	patternDefn: PatternDefn [0..*] {composite} (from PatternScope)
	parameter: Var [0..*] (subsets VarScope::var)
	term: Term [1] {composite}

	Constraints
	Semantics

	4.2.6 Transformation
	Attributes
	name: string [0..1] (from VarScope)

	Associations
	var: Var [0..*] {composite, ordered} (from VarScope)
	patternDefn: PatternDefn [0..*] {composite} (from PatternScope)
	trule: TRule [0..*] {composite}
	tracking: Tracking [0..*] {composite}

	Constraints
	Semantics

	4.2.7 TRule
	Attributes
	name: string [0..1] (from VarScope)

	Associations
	var: Var [0..*] {composite, ordered} (from VarScope)
	src: Term [0..1] {composite}
	tgt: SimpleTerm [0..*] {composite}
	extended: TRule [0..*]
	extender: TRule [0..*]
	superseded: TRule [0..*]
	superseder: TRule [0..*]
	transformation: Transformation

	Constraints
	P:person and not P[name -> N]

	Semantics

	4.2.8 MofTerm
	Associations
	context: Var [0..1] (from Term)
	arg: Expression [0..*] {composite, ordered} (from SimpleTerm)
	trule: TRule [0..1] (from Term & SimpleTerm)
	query: Query [0..1] (from Term)
	patternDefn: PatternDefn [0..1] (from Term)
	compoundTerm: CompoundTerm [0..1] (from Term)

	Constraints
	Semantics

	4.2.9 MofInstance
	Attributes
	isExactly: boolean

	Associations
	context: Var [0..1] (from Term)
	trule: TRule [0..1] (from Term & SimpleTerm)
	arg: Expression [0..*] {composite, ordered (from SimpleTerm)
	query: Query [0..1] (from Term)
	patternDefn: PatternDefn [0..1] (from Term)
	compoundTerm: CompoundTerm [0..1] (from Term)
	feature: MofFeature [0..*] {composite}
	typeName: Expression [1] (subsets SimpleTerm::arg)
	instance: VarUse [1] (subsets SimpleTerm::arg)

	Constraints
	Semantics

	4.2.10 MofFeature
	Attributes
	collect: boolean

	Associations
	context: Var [0..1] (from Term)
	trule: TRule [0..1] (from Term & SimpleTerm)
	arg: Expression [0..*] {composite, ordered} (from SimpleTerm)
	query: Query [0..1] (from Term)
	patternDefn: PatternDefn [0..1] (from Term)
	compoundTerm: CompoundTerm [0..1] (from Term)
	instance: MofInstance [1]
	featureName: Expression [1] (subsets SimpleTerm::arg)
	value: VarUse [1] (subsets SimpleTerm::arg)

	Constraints
	Semantics

	4.2.11 MofLink
	Attributes
	Associations
	context: Var [0..1] (from Term)
	trule: TRule [0..1] (from Term & SimpleTerm)
	arg: Expression [0..*] {composite, ordered} (from SimpleTerm)
	query: Query [0..1] (from Term)
	patternDefn: PatternDefn [0..1] (from Term)
	compoundTerm: CompoundTerm [0..1] (from Term)
	typeName: Expression [1] (subsets SimpleTerm::arg)
	member: VarUse [2] {ordered} (subsets SimpleTerm::arg)

	Constraints
	Semantics

	4.2.12 MofFeatureOrder
	Attributes
	Associations
	context: Var [0..1] (from Term)
	trule: TRule [0..1] (from Term & SimpleTerm)
	arg: Expression [0..*] {composite, ordered} (from SimpleTerm)
	query: Query [0..1] (from Term)
	patternDefn: PatternDefn [0..1] (from Term)
	compoundTerm: CompoundTerm [0..1] (from Term)
	lesser: MofFeature [1]
	greater: MofFeature [1]

	Constraints
	Semantics

	4.2.13 MofLinkOrder
	Attributes
	Associations
	context: Var [0..1] (from Term)
	trule: TRule [0..1] (from Term & SimpleTerm)
	arg: Expression [0..*] {composite, ordered} (from SimpleTerm)
	query: Query [0..1] (from Term)
	patternDefn: PatternDefn [0..1] (from Term)
	compoundTerm: CompoundTerm [0..1] (from Term)
	lesser: MofLink [1]
	greater: MofLink [1]

	Constraints
	Semantics

	4.2.14 Tracking
	Attributes
	name: string

	Associations
	transformation: Transformation [1]
	parent: Tracking [0..1]
	child: Tracking [0..*]

	Constraints
	Semantics

	4.2.15 Term
	Attributes
	Associations
	context: Var [0..1]
	trule: TRule [0..1]
	query: Query [0..1]
	patternDefn: PatternDefn [0..1]
	compoundTerm: CompoundTerm [0..1]

	Constraints
	Semantics

	4.2.16 CompoundTerm
	Attributes
	Associations
	term: Term [1..*] {composite, ordered}
	context: Var [0..1] (from Term)
	trule: TRule [0..1] (from Term)
	query: Query [0..1] (from Term)
	patternDefn: PatternDefn [0..1] (from Term)
	compoundTerm: CompoundTerm [0..1] (from Term)

	Constraints
	Semantics

	4.2.17 AndTerm
	Attributes
	Associations
	term: Term [1..*] {composite, ordered} (from CompoundTerm)
	context: Var [0..1] (from Term)
	trule: TRule [0..1] (from Term)
	query: Query [0..1] (from Term)
	patternDefn: PatternDefn [0..1] (from Term)
	compoundTerm: CompoundTerm [0..1] (from Term)

	Constraints
	Semantics

	4.2.18 OrTerm
	Attributes
	Associations
	term: Term [1..*] {composite, ordered} (from CompoundTerm)
	context: Var [0..1] (from Term)
	trule: TRule [0..1] (from Term)
	query: Query [0..1] (from Term)
	patternDefn: PatternDefn [0..1] (from Term)
	compoundTerm: CompoundTerm [0..1] (from Term)

	Constraints
	Semantics

	4.2.19 NotTerm
	Attributes
	Associations
	term: Term [1] (subsets CompoundTerm::term)
	context: Var [0..1] (from Term)
	trule: TRule [0..1] (from Term)
	query: Query [0..1] (from Term)
	patternDefn: PatternDefn [0..1] (from Term)
	compoundTerm: CompoundTerm [0..1] (from Term)

	Constraints
	Semantics

	4.2.20 IfTerm
	Attributes
	Associations
	term: Term [1..*] {composite, ordered} (from CompoundTerm)
	context: Var [0..1] (from Term)
	trule: TRule [0..1] (from Term)
	query: Query [0..1] (from Term)
	patternDefn: PatternDefn [0..1] (from Term)
	compoundTerm: CompoundTerm [0..1] (from Term)
	ifTerm: Term [1] (subsets term from CompoundTerm)
	thenTerm: Term [1] (subsets term from CompoundTerm)
	elseTerm: Term [1] (subsets term from CompoundTerm)

	Constraints
	Semantics

	4.2.21 SimpleTerm
	Attributes
	Associations
	arg: Expression [0..*] {composite, ordered}
	context: Var [0..1] (from Term)
	trule: TRule [0..1] (from Term)
	query: Query [0..1] (from Term)
	patternDefn: PatternDefn [0..1] (from Term)
	compoundTerm: CompoundTerm [0..1] (from Term)

	Constraints
	Semantics

	4.2.22 TrackingUse
	Attributes
	Associations
	context: Var [0..1] (from Term)
	arg: Expression [0..*] {composite, ordered} (from SimpleTerm)
	trule: TRule [0..1] (from Term & SimpleTerm)
	query: Query [0..1] (from Term)
	patternDefn: PatternDefn [0..1] (from Term)
	compoundTerm: CompoundTerm [0..1] (from Term)
	tgt: VarUse [1] (subsets arg from SimpleTerm)
	src: VarUse [0..*] {ordered} (subsets arg from SimpleTerm)
	tracking: Tracking [1]

	Constraints
	Semantics

	4.2.23 PatternUse
	Attributes
	Associations
	context: Var [0..1] (from Term)
	arg: Expression [0..*] {composite, ordered} (from SimpleTerm)
	trule: TRule [0..1] (from Term & SimpleTerm)
	query: Query [0..1] (from Term)
	patternDefn: PatternDefn [0..1] (from Term)
	compoundTerm: CompoundTerm [0..1] (from Term)
	defn: PatternDefn [1]

	Constraints
	Semantics

	4.2.24 Condition
	Attributes
	Associations
	context: Var [0..1] (from Term)
	arg: Expression [1] {composite} (subsets SimpleTerm::arg)
	trule: TRule [0..1] (from Term & SimpleTerm)
	query: Query [0..1] (from Term)
	patternDefn: PatternDefn [0..1] (from Term)
	compoundTerm: CompoundTerm [0..1] (from Term)

	Constraints
	Semantics

	4.2.25 Expression
	Attributes
	Associations
	simpleTerm: SimpleTerm [0..1]
	expr: CompoundExpr [0..1]

	Constraints
	Semantics

	4.2.26 VarUse
	Attributes
	Associations
	simpleTerm: SimpleTerm [0..1] (from Expression)
	expr: CompoundExpr [0..1] (from Expression)
	var: Var [1]

	Constraints
	Semantics

	4.2.27 SimpleExpr
	Attributes
	representation: string [1]

	Associations
	simpleTerm: SimpleTerm [0..1] (from Expression)
	expr: CompoundExpr [0..1] (from Expression)

	Constraints
	Semantics

	4.2.28 StringConstant
	Attributes
	representation: string [1] (from SimpleExpr)

	Associations
	simpleTerm: SimpleTerm [0..1] (from Expression)
	expr: CompoundExpr [0..1] (from Expression)

	Constraints
	Semantics

	4.2.29 IntConstant
	Attributes
	representation: string [1] (from SimpleExpr)

	Associations
	simpleTerm: SimpleTerm [0..1] (from Expression)
	expr: CompoundExpr [0..1] (from Expression)

	Constraints
	Semantics

	4.2.30 BooleanConstant
	Attributes
	representation: string [1] (from SimpleExpr)

	Associations
	simpleTerm: SimpleTerm [0..1] (from Expression)
	expr: CompoundExpr [0..1] (from Expression)

	Constraints
	Semantics

	4.2.31 EnumConstant
	Attributes
	representation: string [1] (from SimpleExpr)

	Associations
	simpleTerm: SimpleTerm [0..1] (from Expression)
	expr: CompoundExpr [0..1] (from Expression)

	Constraints
	Semantics

	4.2.32 CompoundExpr
	Attributes
	Associations
	simpleTerm: SimpleTerm [0..1] (from Expression)
	expr: CompoundExpr [0..1] (from Expression)
	arg: Expression [0..*] {composite, ordered}

	Constraints
	Semantics

	4.2.33 CollectionExpr
	Attributes
	unique: boolean
	ordered: boolean

	Associations
	simpleTerm: SimpleTerm [0..1] (from Expression)
	expr: CompoundExpr [0..1] (from Expression)
	arg: Expression [0..*] {composite, ordered} (from CompoundExpr)

	Constraints
	Semantics

	4.2.34 FunctionExpr
	Attributes
	operator: string

	Associations
	simpleTerm: SimpleTerm [0..1] (from Expression)
	expr: CompoundExpr [0..1] (from Expression)
	arg: Expression [0..*] {composite, ordered} (from CompoundExpr)

	Constraints
	Semantics

	4.2.35 NamedExpr
	Attributes
	name: string

	Associations
	simpleTerm: SimpleTerm [0..1] (from Expression)
	expr: CompoundExpr [0..1] (from Expression)
	arg: Expression [0..*] {composite, ordered} (from CompoundExpr)

	Constraints
	Semantics

	Conformance 5
	5.1 Query Conformance
	5.2 Transformation Conformance
	5.3 View Conformance
	5.4 Quokka Conformance
	5.5 Tracking Conformance

	References 6
	[Breeze]
	[CWM]
	[dMOF]
	[EDOC]
	[HeRaSt02]
	[HUTN]
	[GeLaRa02]
	[JMI]
	[KiLaWu95]
	[MDA]
	[MOF]
	[MOF2]
	[MOF2Core]
	[OCL2]
	[QVT]
	[TokTok]
	[UML]
	[UML2]
	[XMI]
	[XSLT99]

